    September  2014, 34(9): 3437-3454. doi: 10.3934/dcds.2014.34.3437

## On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation

 1 Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912 2 Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2

Received  September 2013 Revised  December 2013 Published  March 2014

We consider a transport-diffusion equation of the form $\partial_t \theta + v \cdot \nabla \theta + \nu \mathcal{A} \theta = 0$, where $v$ is a given time-dependent vector field on $\mathbb R^d$. The operator $\mathcal{A}$ represents log-modulated fractional dissipation: $\mathcal{A}=\frac {|\nabla|^{\gamma}}{\log^{\beta}(\lambda+|\nabla|)}$ and the parameters $\nu\ge 0$, $\beta\ge 0$, $0\le \gamma \le 2$, $\lambda>1$. We introduce a novel nonlocal decomposition of the operator $\mathcal{A}$ in terms of a weighted integral of the usual fractional operators $|\nabla|^{s}$, $0\le s \le \gamma$ plus a smooth remainder term which corresponds to an $L^1$ kernel. For a general vector field $v$ (possibly non-divergence-free) we prove a generalized $L^\infty$ maximum principle of the form $\| \theta(t)\|_\infty \le e^{Ct} \| \theta_0 \|_{\infty}$ where the constant $C=C(\nu,\beta,\gamma)>0$. In the case $\text{div}(v)=0$ the same inequality holds for $\|\theta(t)\|_p$ with $1\le p \le \infty$. Under the additional assumption that $\theta_0\in L^2$, we show that $\|\theta(t)\|_p$ is uniformly bounded for $2\le p\le \infty$. At the cost of a possible exponential factor, this extends a recent result of Hmidi  to the full regime $d\ge 1$, $0\le \gamma \le 2$ and removes the incompressibility assumption in the $L^\infty$ case.
Citation: Hongjie Dong, Dong Li. On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3437-3454. doi: 10.3934/dcds.2014.34.3437
##### References:
  R. Askey, Radial Characteristic Functions,, University of Wisconsin-Madison, (1262).   Google Scholar  A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Phys., 249 (2004), 511.  doi: 10.1007/s00220-004-1055-1.  Google Scholar  C. H. Chan, M. Czubak and L. Silvestre, Eventual regularization of the slightly supercritical fractional Burgers equation,, Discrete Contin. Dyn. Syst., 27 (2010), 847.  doi: 10.3934/dcds.2010.27.847.  Google Scholar  H. Dong, D. Du and D. Li, Finite time singularities and global well-posedness for fractal Burgers equations,, Indiana Univ. Math. J., 58 (2009), 807.  doi: 10.1512/iumj.2009.58.3505.  Google Scholar  M. Dabkowski, A. Kiselev, L. Silvestre and V. Vicol, Global well-posedness of slightly supercritical active scalar equations,, Analysis and PDE, ().   Google Scholar  M. Dabkowski, A. Kiselev and V. Vicol, Global well-posedness for a slightly supercritical surface quasi-geostrophic equation,, Nonlinearity, 25 (2012), 1525.  doi: 10.1088/0951-7715/25/5/1525.  Google Scholar  T. Hmidi, On a maximum principle and its application to the logarithmically critical Boussinesq system,, Anal. PDE, 4 (2011), 247.  doi: 10.2140/apde.2011.4.247.  Google Scholar  N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations,, Comm. Math. Phys., 255 (2005), 161.  doi: 10.1007/s00220-004-1256-7.  Google Scholar  E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, (1970). Google Scholar  T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal. PDE, 2 (2009), 361.  doi: 10.2140/apde.2009.2.361.  Google Scholar  J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations,, J. Math. Fluid Mech., 13 (2011), 295.  doi: 10.1007/s00021-009-0017-y.  Google Scholar

show all references

##### References:
  R. Askey, Radial Characteristic Functions,, University of Wisconsin-Madison, (1262).   Google Scholar  A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Phys., 249 (2004), 511.  doi: 10.1007/s00220-004-1055-1.  Google Scholar  C. H. Chan, M. Czubak and L. Silvestre, Eventual regularization of the slightly supercritical fractional Burgers equation,, Discrete Contin. Dyn. Syst., 27 (2010), 847.  doi: 10.3934/dcds.2010.27.847.  Google Scholar  H. Dong, D. Du and D. Li, Finite time singularities and global well-posedness for fractal Burgers equations,, Indiana Univ. Math. J., 58 (2009), 807.  doi: 10.1512/iumj.2009.58.3505.  Google Scholar  M. Dabkowski, A. Kiselev, L. Silvestre and V. Vicol, Global well-posedness of slightly supercritical active scalar equations,, Analysis and PDE, ().   Google Scholar  M. Dabkowski, A. Kiselev and V. Vicol, Global well-posedness for a slightly supercritical surface quasi-geostrophic equation,, Nonlinearity, 25 (2012), 1525.  doi: 10.1088/0951-7715/25/5/1525.  Google Scholar  T. Hmidi, On a maximum principle and its application to the logarithmically critical Boussinesq system,, Anal. PDE, 4 (2011), 247.  doi: 10.2140/apde.2011.4.247.  Google Scholar  N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations,, Comm. Math. Phys., 255 (2005), 161.  doi: 10.1007/s00220-004-1256-7.  Google Scholar  E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, (1970). Google Scholar  T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal. PDE, 2 (2009), 361.  doi: 10.2140/apde.2009.2.361.  Google Scholar  J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations,, J. Math. Fluid Mech., 13 (2011), 295.  doi: 10.1007/s00021-009-0017-y.  Google Scholar
  Siwei Duo, Hong Wang, Yanzhi Zhang. A comparative study on nonlocal diffusion operators related to the fractional Laplacian. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 231-256. doi: 10.3934/dcdsb.2018110  Vincenzo Ambrosio, Giovanni Molica Bisci. Periodic solutions for nonlocal fractional equations. Communications on Pure & Applied Analysis, 2017, 16 (1) : 331-344. doi: 10.3934/cpaa.2017016  Martin Burger, Jan-Frederik Pietschmann, Marie-Therese Wolfram. Identification of nonlinearities in transport-diffusion models of crowded motion. Inverse Problems & Imaging, 2013, 7 (4) : 1157-1182. doi: 10.3934/ipi.2013.7.1157  Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153  Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291  Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775  Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171  Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039  M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Second-order evolution equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4239-4247. doi: 10.3934/dcds.2017181  Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure & Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735  Martin Frank, Weiran Sun. Fractional diffusion limits of non-classical transport equations. Kinetic & Related Models, 2018, 11 (6) : 1503-1526. doi: 10.3934/krm.2018059  Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335  Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic & Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013  Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar. On the local and global existence of solutions to 1d transport equations with nonlocal velocity. Networks & Heterogeneous Media, 2019, 14 (3) : 471-487. doi: 10.3934/nhm.2019019  Lijuan Wang, Weike Wang. Pointwise estimates of solutions to conservation laws with nonlocal dissipation-type terms. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2835-2854. doi: 10.3934/cpaa.2019127  Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301  Armel Ovono Andami. From local to nonlocal in a diffusion model. Conference Publications, 2011, 2011 (Special) : 54-60. doi: 10.3934/proc.2011.2011.54  J. García-Melián, Julio D. Rossi. A logistic equation with refuge and nonlocal diffusion. Communications on Pure & Applied Analysis, 2009, 8 (6) : 2037-2053. doi: 10.3934/cpaa.2009.8.2037  Elisabeth Logak, Isabelle Passat. An epidemic model with nonlocal diffusion on networks. Networks & Heterogeneous Media, 2016, 11 (4) : 693-719. doi: 10.3934/nhm.2016014  Christian Kuehn, Thilo Gross. Nonlocal generalized models of predator-prey systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 693-720. doi: 10.3934/dcdsb.2013.18.693

2018 Impact Factor: 1.143