    September  2014, 34(9): 3437-3454. doi: 10.3934/dcds.2014.34.3437

## On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation

 1 Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912 2 Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2

Received  September 2013 Revised  December 2013 Published  March 2014

We consider a transport-diffusion equation of the form $\partial_t \theta + v \cdot \nabla \theta + \nu \mathcal{A} \theta = 0$, where $v$ is a given time-dependent vector field on $\mathbb R^d$. The operator $\mathcal{A}$ represents log-modulated fractional dissipation: $\mathcal{A}=\frac {|\nabla|^{\gamma}}{\log^{\beta}(\lambda+|\nabla|)}$ and the parameters $\nu\ge 0$, $\beta\ge 0$, $0\le \gamma \le 2$, $\lambda>1$. We introduce a novel nonlocal decomposition of the operator $\mathcal{A}$ in terms of a weighted integral of the usual fractional operators $|\nabla|^{s}$, $0\le s \le \gamma$ plus a smooth remainder term which corresponds to an $L^1$ kernel. For a general vector field $v$ (possibly non-divergence-free) we prove a generalized $L^\infty$ maximum principle of the form $\| \theta(t)\|_\infty \le e^{Ct} \| \theta_0 \|_{\infty}$ where the constant $C=C(\nu,\beta,\gamma)>0$. In the case $\text{div}(v)=0$ the same inequality holds for $\|\theta(t)\|_p$ with $1\le p \le \infty$. Under the additional assumption that $\theta_0\in L^2$, we show that $\|\theta(t)\|_p$ is uniformly bounded for $2\le p\le \infty$. At the cost of a possible exponential factor, this extends a recent result of Hmidi  to the full regime $d\ge 1$, $0\le \gamma \le 2$ and removes the incompressibility assumption in the $L^\infty$ case.
Citation: Hongjie Dong, Dong Li. On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3437-3454. doi: 10.3934/dcds.2014.34.3437
##### References:
  R. Askey, Radial Characteristic Functions,, University of Wisconsin-Madison, (1262).   Google Scholar  A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Phys., 249 (2004), 511.  doi: 10.1007/s00220-004-1055-1.  Google Scholar  C. H. Chan, M. Czubak and L. Silvestre, Eventual regularization of the slightly supercritical fractional Burgers equation,, Discrete Contin. Dyn. Syst., 27 (2010), 847.  doi: 10.3934/dcds.2010.27.847.  Google Scholar  H. Dong, D. Du and D. Li, Finite time singularities and global well-posedness for fractal Burgers equations,, Indiana Univ. Math. J., 58 (2009), 807.  doi: 10.1512/iumj.2009.58.3505.  Google Scholar  M. Dabkowski, A. Kiselev, L. Silvestre and V. Vicol, Global well-posedness of slightly supercritical active scalar equations,, Analysis and PDE, ().   Google Scholar  M. Dabkowski, A. Kiselev and V. Vicol, Global well-posedness for a slightly supercritical surface quasi-geostrophic equation,, Nonlinearity, 25 (2012), 1525.  doi: 10.1088/0951-7715/25/5/1525.  Google Scholar  T. Hmidi, On a maximum principle and its application to the logarithmically critical Boussinesq system,, Anal. PDE, 4 (2011), 247.  doi: 10.2140/apde.2011.4.247.  Google Scholar  N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations,, Comm. Math. Phys., 255 (2005), 161.  doi: 10.1007/s00220-004-1256-7.  Google Scholar  E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, (1970). Google Scholar  T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal. PDE, 2 (2009), 361.  doi: 10.2140/apde.2009.2.361.  Google Scholar  J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations,, J. Math. Fluid Mech., 13 (2011), 295.  doi: 10.1007/s00021-009-0017-y.  Google Scholar

show all references

##### References:
  R. Askey, Radial Characteristic Functions,, University of Wisconsin-Madison, (1262).   Google Scholar  A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Phys., 249 (2004), 511.  doi: 10.1007/s00220-004-1055-1.  Google Scholar  C. H. Chan, M. Czubak and L. Silvestre, Eventual regularization of the slightly supercritical fractional Burgers equation,, Discrete Contin. Dyn. Syst., 27 (2010), 847.  doi: 10.3934/dcds.2010.27.847.  Google Scholar  H. Dong, D. Du and D. Li, Finite time singularities and global well-posedness for fractal Burgers equations,, Indiana Univ. Math. J., 58 (2009), 807.  doi: 10.1512/iumj.2009.58.3505.  Google Scholar  M. Dabkowski, A. Kiselev, L. Silvestre and V. Vicol, Global well-posedness of slightly supercritical active scalar equations,, Analysis and PDE, ().   Google Scholar  M. Dabkowski, A. Kiselev and V. Vicol, Global well-posedness for a slightly supercritical surface quasi-geostrophic equation,, Nonlinearity, 25 (2012), 1525.  doi: 10.1088/0951-7715/25/5/1525.  Google Scholar  T. Hmidi, On a maximum principle and its application to the logarithmically critical Boussinesq system,, Anal. PDE, 4 (2011), 247.  doi: 10.2140/apde.2011.4.247.  Google Scholar  N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations,, Comm. Math. Phys., 255 (2005), 161.  doi: 10.1007/s00220-004-1256-7.  Google Scholar  E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, (1970). Google Scholar  T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal. PDE, 2 (2009), 361.  doi: 10.2140/apde.2009.2.361.  Google Scholar  J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations,, J. Math. Fluid Mech., 13 (2011), 295.  doi: 10.1007/s00021-009-0017-y.  Google Scholar
  Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462  Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316  Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321  Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116  Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110  Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383  Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253  Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385  Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354  Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319  Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048  Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050  Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080  Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249  Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213  Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345  Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104  Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $p$-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445  S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435  Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

2019 Impact Factor: 1.338