September  2014, 34(9): 3437-3454. doi: 10.3934/dcds.2014.34.3437

On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation

1. 

Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912

2. 

Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2

Received  September 2013 Revised  December 2013 Published  March 2014

We consider a transport-diffusion equation of the form $\partial_t \theta + v \cdot \nabla \theta + \nu \mathcal{A} \theta = 0$, where $v$ is a given time-dependent vector field on $\mathbb R^d$. The operator $\mathcal{A}$ represents log-modulated fractional dissipation: $\mathcal{A}=\frac {|\nabla|^{\gamma}}{\log^{\beta}(\lambda+|\nabla|)}$ and the parameters $\nu\ge 0$, $\beta\ge 0$, $0\le \gamma \le 2$, $\lambda>1$. We introduce a novel nonlocal decomposition of the operator $\mathcal{A}$ in terms of a weighted integral of the usual fractional operators $|\nabla|^{s}$, $0\le s \le \gamma$ plus a smooth remainder term which corresponds to an $L^1$ kernel. For a general vector field $v$ (possibly non-divergence-free) we prove a generalized $L^\infty$ maximum principle of the form $ \| \theta(t)\|_\infty \le e^{Ct} \| \theta_0 \|_{\infty}$ where the constant $C=C(\nu,\beta,\gamma)>0$. In the case $\text{div}(v)=0$ the same inequality holds for $\|\theta(t)\|_p$ with $1\le p \le \infty$. Under the additional assumption that $\theta_0\in L^2$, we show that $\|\theta(t)\|_p$ is uniformly bounded for $2\le p\le \infty$. At the cost of a possible exponential factor, this extends a recent result of Hmidi [7] to the full regime $d\ge 1$, $0\le \gamma \le 2$ and removes the incompressibility assumption in the $L^\infty$ case.
Citation: Hongjie Dong, Dong Li. On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3437-3454. doi: 10.3934/dcds.2014.34.3437
References:
[1]

R. Askey, Radial Characteristic Functions,, University of Wisconsin-Madison, (1262).   Google Scholar

[2]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Phys., 249 (2004), 511.  doi: 10.1007/s00220-004-1055-1.  Google Scholar

[3]

C. H. Chan, M. Czubak and L. Silvestre, Eventual regularization of the slightly supercritical fractional Burgers equation,, Discrete Contin. Dyn. Syst., 27 (2010), 847.  doi: 10.3934/dcds.2010.27.847.  Google Scholar

[4]

H. Dong, D. Du and D. Li, Finite time singularities and global well-posedness for fractal Burgers equations,, Indiana Univ. Math. J., 58 (2009), 807.  doi: 10.1512/iumj.2009.58.3505.  Google Scholar

[5]

M. Dabkowski, A. Kiselev, L. Silvestre and V. Vicol, Global well-posedness of slightly supercritical active scalar equations,, Analysis and PDE, ().   Google Scholar

[6]

M. Dabkowski, A. Kiselev and V. Vicol, Global well-posedness for a slightly supercritical surface quasi-geostrophic equation,, Nonlinearity, 25 (2012), 1525.  doi: 10.1088/0951-7715/25/5/1525.  Google Scholar

[7]

T. Hmidi, On a maximum principle and its application to the logarithmically critical Boussinesq system,, Anal. PDE, 4 (2011), 247.  doi: 10.2140/apde.2011.4.247.  Google Scholar

[8]

N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations,, Comm. Math. Phys., 255 (2005), 161.  doi: 10.1007/s00220-004-1256-7.  Google Scholar

[9]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, (1970).   Google Scholar

[10]

T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal. PDE, 2 (2009), 361.  doi: 10.2140/apde.2009.2.361.  Google Scholar

[11]

J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations,, J. Math. Fluid Mech., 13 (2011), 295.  doi: 10.1007/s00021-009-0017-y.  Google Scholar

show all references

References:
[1]

R. Askey, Radial Characteristic Functions,, University of Wisconsin-Madison, (1262).   Google Scholar

[2]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Phys., 249 (2004), 511.  doi: 10.1007/s00220-004-1055-1.  Google Scholar

[3]

C. H. Chan, M. Czubak and L. Silvestre, Eventual regularization of the slightly supercritical fractional Burgers equation,, Discrete Contin. Dyn. Syst., 27 (2010), 847.  doi: 10.3934/dcds.2010.27.847.  Google Scholar

[4]

H. Dong, D. Du and D. Li, Finite time singularities and global well-posedness for fractal Burgers equations,, Indiana Univ. Math. J., 58 (2009), 807.  doi: 10.1512/iumj.2009.58.3505.  Google Scholar

[5]

M. Dabkowski, A. Kiselev, L. Silvestre and V. Vicol, Global well-posedness of slightly supercritical active scalar equations,, Analysis and PDE, ().   Google Scholar

[6]

M. Dabkowski, A. Kiselev and V. Vicol, Global well-posedness for a slightly supercritical surface quasi-geostrophic equation,, Nonlinearity, 25 (2012), 1525.  doi: 10.1088/0951-7715/25/5/1525.  Google Scholar

[7]

T. Hmidi, On a maximum principle and its application to the logarithmically critical Boussinesq system,, Anal. PDE, 4 (2011), 247.  doi: 10.2140/apde.2011.4.247.  Google Scholar

[8]

N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations,, Comm. Math. Phys., 255 (2005), 161.  doi: 10.1007/s00220-004-1256-7.  Google Scholar

[9]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, (1970).   Google Scholar

[10]

T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal. PDE, 2 (2009), 361.  doi: 10.2140/apde.2009.2.361.  Google Scholar

[11]

J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations,, J. Math. Fluid Mech., 13 (2011), 295.  doi: 10.1007/s00021-009-0017-y.  Google Scholar

[1]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[5]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[6]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[7]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[8]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[9]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[12]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[13]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[14]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[15]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[16]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[17]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[18]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[19]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[20]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]