Citation: |
[1] |
R. Askey, Radial Characteristic Functions, University of Wisconsin-Madison, Mathematics Research Center, 1262, 1973. |
[2] |
A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528.doi: 10.1007/s00220-004-1055-1. |
[3] |
C. H. Chan, M. Czubak and L. Silvestre, Eventual regularization of the slightly supercritical fractional Burgers equation, Discrete Contin. Dyn. Syst., 27 (2010), 847-861.doi: 10.3934/dcds.2010.27.847. |
[4] |
H. Dong, D. Du and D. Li, Finite time singularities and global well-posedness for fractal Burgers equations, Indiana Univ. Math. J., 58 (2009), 807-821.doi: 10.1512/iumj.2009.58.3505. |
[5] |
M. Dabkowski, A. Kiselev, L. Silvestre and V. Vicol, Global well-posedness of slightly supercritical active scalar equations, Analysis and PDE, Accepted, arXiv:1203.6302. |
[6] |
M. Dabkowski, A. Kiselev and V. Vicol, Global well-posedness for a slightly supercritical surface quasi-geostrophic equation, Nonlinearity, 25 (2012), 1525-1535.doi: 10.1088/0951-7715/25/5/1525. |
[7] |
T. Hmidi, On a maximum principle and its application to the logarithmically critical Boussinesq system, Anal. PDE, 4 (2011), 247-284.doi: 10.2140/apde.2011.4.247. |
[8] |
N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Comm. Math. Phys., 255 (2005), 161-181.doi: 10.1007/s00220-004-1256-7. |
[9] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970. |
[10] |
T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation, Anal. PDE, 2 (2009), 361-366.doi: 10.2140/apde.2009.2.361. |
[11] |
J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech., 13 (2011), 295-305.doi: 10.1007/s00021-009-0017-y. |