• Previous Article
    Quasiconformal Anosov flows and quasisymmetric rigidity of Hamenst$\ddot{a}$dt distances
  • DCDS Home
  • This Issue
  • Next Article
    On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation
September  2014, 34(9): 3455-3469. doi: 10.3934/dcds.2014.34.3455

Periodic solutions of El Niño model through the Vallis differential system

1. 

Department of Mathematics, IBILCE, UNESP - Univ Estadual Paulista, Rua Cristovão Colombo, 2265, Jardim Nazareth, CEP 15.054-000, Sao José de Rio Preto, SP, Brazil

2. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia

Received  April 2013 Revised  December 2013 Published  March 2014

By rescaling the variables, the parameters and the periodic function of the Vallis differential system we provide sufficient conditions for the existence of periodic solutions and we also characterize their kind of stability. The results are obtained using averaging theory.
Citation: Rodrigo Donizete Euzébio, Jaume Llibre. Periodic solutions of El Niño model through the Vallis differential system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3455-3469. doi: 10.3934/dcds.2014.34.3455
References:
[1]

A. Buică, J. P. Françoise and J. Llibre, Periodic solutions of nonlinear periodic differential systems with a small parameter,, Comm. on Pure and Appl. Anal., 6 (2007), 103. doi: 10.3934/cpaa.2007.6.103. Google Scholar

[2]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Revised and Corrected Reprint of the 1983 Original,, Applied Mathematical Sciences, (1990). Google Scholar

[3]

A. Kanatnikov and A. Krishchenko, Localization of invariant compact sets of nonautonomous systems,, Differ. Equ., 45 (2009), 46. doi: 10.1134/S0012266109010054. Google Scholar

[4]

A. P. Krishchenko and K. E. Starkov, Localization of compact invariant sets of nonlinear time-varying systems,, Intern. Journal of Bifurcation and Chaos, 18 (2008), 1599. doi: 10.1142/S021812740802121X. Google Scholar

[5]

J. Llibre and C. Vidal, Periodic solutions of a periodic FitzHugh-Nagumo differential system,, to appear., (). Google Scholar

[6]

I. G. Malkin, Some Problems of the Theory of Nonlinear Oscillations,, (Russian) Gosudarstv. Izdat. Tehn.-Teor. Lit., (1956). Google Scholar

[7]

M. Roseau, Vibrations Non Linéaires et Théorie de la Stabilité,, (French) Springer Tracts in Natural Philosophy, (1966). Google Scholar

[8]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging Method in Nonlinear Dynamical Systems,, Applied Mathematical Sciences, (2007). Google Scholar

[9]

D. Strozzi, On the Origin of Interannual and Irregular Behaviour in the El Niño Properties,, Report of Department of Physics, (1999). Google Scholar

[10]

G. K. Vallis, Conceptual models of El Niño and the southern oscillation,, Geophys. Res., 93 (1988), 13979. doi: 10.1029/JC093iC11p13979. Google Scholar

show all references

References:
[1]

A. Buică, J. P. Françoise and J. Llibre, Periodic solutions of nonlinear periodic differential systems with a small parameter,, Comm. on Pure and Appl. Anal., 6 (2007), 103. doi: 10.3934/cpaa.2007.6.103. Google Scholar

[2]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Revised and Corrected Reprint of the 1983 Original,, Applied Mathematical Sciences, (1990). Google Scholar

[3]

A. Kanatnikov and A. Krishchenko, Localization of invariant compact sets of nonautonomous systems,, Differ. Equ., 45 (2009), 46. doi: 10.1134/S0012266109010054. Google Scholar

[4]

A. P. Krishchenko and K. E. Starkov, Localization of compact invariant sets of nonlinear time-varying systems,, Intern. Journal of Bifurcation and Chaos, 18 (2008), 1599. doi: 10.1142/S021812740802121X. Google Scholar

[5]

J. Llibre and C. Vidal, Periodic solutions of a periodic FitzHugh-Nagumo differential system,, to appear., (). Google Scholar

[6]

I. G. Malkin, Some Problems of the Theory of Nonlinear Oscillations,, (Russian) Gosudarstv. Izdat. Tehn.-Teor. Lit., (1956). Google Scholar

[7]

M. Roseau, Vibrations Non Linéaires et Théorie de la Stabilité,, (French) Springer Tracts in Natural Philosophy, (1966). Google Scholar

[8]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging Method in Nonlinear Dynamical Systems,, Applied Mathematical Sciences, (2007). Google Scholar

[9]

D. Strozzi, On the Origin of Interannual and Irregular Behaviour in the El Niño Properties,, Report of Department of Physics, (1999). Google Scholar

[10]

G. K. Vallis, Conceptual models of El Niño and the southern oscillation,, Geophys. Res., 93 (1988), 13979. doi: 10.1029/JC093iC11p13979. Google Scholar

[1]

Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$ \ddot{\mbox{o}} $dinger-Poisson system involving critical exponent. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104

[2]

Kwangseok Choe, Jongmin Han, Chang-Shou Lin. Bubbling solutions for the Chern-Simons gauged $O(3)$ sigma model in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2703-2728. doi: 10.3934/dcds.2014.34.2703

[3]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[4]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[5]

V. Barbu. Periodic solutions to unbounded Hamiltonian system. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 277-283. doi: 10.3934/dcds.1995.1.277

[6]

Daniel Vasiliu, Jianjun Paul Tian. Periodic solutions of a model for tumor virotherapy. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1587-1597. doi: 10.3934/dcdss.2011.4.1587

[7]

Sorin Micu, Ademir F. Pazoto. Almost periodic solutions for a weakly dissipated hybrid system. Mathematical Control & Related Fields, 2014, 4 (1) : 101-113. doi: 10.3934/mcrf.2014.4.101

[8]

Zhujun Jing, K.Y. Chan, Dashun Xu, Hongjun Cao. Bifurcations of periodic solutions and chaos in Josephson system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 573-592. doi: 10.3934/dcds.2001.7.573

[9]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems & Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[10]

Shi-Liang Wu, Cheng-Hsiung Hsu. Entire solutions with merging fronts to a bistable periodic lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2329-2346. doi: 10.3934/dcds.2016.36.2329

[11]

Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053

[12]

Bouthaina Abdelhedi. Existence of periodic solutions of a system of damped wave equations in thin domains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 767-800. doi: 10.3934/dcds.2008.20.767

[13]

Małgorzata Migda, Ewa Schmeidel, Małgorzata Zdanowicz. Periodic solutions of a $2$-dimensional system of neutral difference equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 359-367. doi: 10.3934/dcdsb.2018024

[14]

Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions to Navier-Stokes-Korteweg system with friction. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 611-629. doi: 10.3934/dcds.2016.36.611

[15]

Pablo Amster, Mariel Paula Kuna, Gonzalo Robledo. Multiple solutions for periodic perturbations of a delayed autonomous system near an equilibrium. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1695-1709. doi: 10.3934/cpaa.2019080

[16]

Jean-Jérôme Casanova. Existence of time-periodic strong solutions to a fluid–structure system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3291-3313. doi: 10.3934/dcds.2019136

[17]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2019171

[18]

Yongqin Liu, Shuichi Kawashima. Asymptotic behavior of solutions to a model system of a radiating gas. Communications on Pure & Applied Analysis, 2011, 10 (1) : 209-223. doi: 10.3934/cpaa.2011.10.209

[19]

Shangbing Ai. Multiple positive periodic solutions for a delay host macroparasite model. Communications on Pure & Applied Analysis, 2004, 3 (2) : 175-182. doi: 10.3934/cpaa.2004.3.175

[20]

Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]