-
Previous Article
Slowly oscillating wavefronts of the KPP-Fisher delayed equation
- DCDS Home
- This Issue
-
Next Article
Quasiconformal Anosov flows and quasisymmetric rigidity of Hamenst$\ddot{a}$dt distances
Dynamics of Klein-Gordon on a compact surface near a homoclinic orbit
1. | Laboratoire de Mathématiques J. Leray, Université de Nantes, UMR CNRS 6629, 2, rue de la Houssinière, 44322 Nantes Cedex 03, France, France |
2. | INRIA & ENS Cachan Bretagne, Avenue Robert Schuman, 35170 Bruz, France |
References:
[1] |
D. Bambusi, Birkhoff normal form for some nonlinear PDEs,, Comm. Math. Phys., 234 (2003), 253.
doi: 10.1007/s00220-002-0774-4. |
[2] |
D. Bambusi, J.-M. Delort, B. Grébert and J. Szeftel, Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds,, Comm. Pure Appl. Math., 60 (2007), 1665.
doi: 10.1002/cpa.20181. |
[3] |
D. Bambusi and B. Grébert, Birkhoff normal form for PDEs with tame modulus,, Duke Math. J., 135 (2006), 415.
doi: 10.1215/S0012-7094-06-13534-2. |
[4] |
M. Berti, L. Biasco and M. Procesi, KAM theory for the Hamiltonian derivative wave equation,, Annales scientifiques de l'ENS, 46 (2013), 299.
|
[5] |
M. Berti and P. Bolle, Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbbT^d$ and a multiplicative potential,, J. European Math. Society, 15 (2013), 229.
doi: 10.4171/JEMS/361. |
[6] |
M. Berti and C. Carminati, Chaotic dynamics for perturbations of infinite dimensional Hamiltonian systems,, Nonlinear Analysis, 48 (2002), 481.
doi: 10.1016/S0362-546X(00)00200-5. |
[7] |
J. Bourgain, On invariant tori of full dimension for 1D periodic NLS,, J. Funct. Anal., 229 (2005), 62.
doi: 10.1016/j.jfa.2004.10.019. |
[8] |
J.-M. Delort, Long-time Sobolev stability for small solutions of quasi-linear Klein-Gordon equations on the circle,, Trans. Amer. Math. Soc., 361 (2009), 4299.
doi: 10.1090/S0002-9947-09-04747-3. |
[9] |
L. H. Eliasson et S. B. Kuksin, KAM for the nonlinear Schrödinger equation,, Ann. of Math., 172 (2010), 371.
doi: 10.4007/annals.2010.172.371. |
[10] |
B. Grébert, T. Jézéquel and L. Thomann, Stability of large periodic solutions of Klein-Gordon near a homoclinic orbit,, , (). Google Scholar |
[11] |
B. Grébert and L. Thomann, KAM for the quantum harmonic oscillator,, Comm. Math. Phys., 307 (2011), 383.
doi: 10.1007/s00220-011-1327-5. |
[12] |
M. Groves and G. Schneider, Modulating pulse solutions for a class of nonlinear wave equations,, Comm. Math. Phys., 219 (2001), 489.
doi: 10.1007/s002200100423. |
[13] |
M. Groves and G. Schneider, Modulating pulse solutions for quasilinear wave equations,, J. Differential Equations, 219 (2005), 221.
doi: 10.1016/j.jde.2005.01.014. |
[14] |
M. Groves and G. Schneider, Modulating pulse solutions to quadratic quasilinear wave equations over exponentially long length scales,, Comm. Math. Phys., 278 (2008), 567.
doi: 10.1007/s00220-007-0400-6. |
[15] |
B. Helffer, Spectral Theory and Its Applications,, Cambridge Studies in Advanced Mathematics, (2013).
|
[16] |
P.-F. Hsieh and Y. Sibuya, Basic Theory of Ordinary Differential Equations,, Universitext. Springer-Verlag, (1999).
doi: 10.1007/978-1-4612-1506-6. |
[17] |
G. Iooss and M.-C. Pérouème, Perturbed homoclinic solutions in 1:1 resonance vector fields,, J. Differential Equations, 102 (1993), 62.
doi: 10.1006/jdeq.1993.1022. |
[18] |
T. Jézéquel, P. Bernard and E. Lombardi, Homoclinic orbits with many loops near a $0^2i\omega$ resonant fixed point of Hamiltonian systems,, To appear., (). Google Scholar |
[19] |
R. Joly and G. Raugel, A striking correspondence between the dynamics generated by the vector fields and by the scalar parabolic equations,, Confluentes Mathematici, 3 (2011), 471.
doi: 10.1142/S1793744211000369. |
[20] |
E. Lombardi, Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves,, Arch. Rationnal Mech. Anal., 137 (1997), 227.
doi: 10.1007/s002050050029. |
[21] |
E. Lombardi, Oscillatory Integrals and Phenomena Beyond all Algebraic Orders,, Lecture Notes in Mathematics, (1741).
doi: 10.1007/BFb0104102. |
[22] |
A. Mielke, Hamiltonian and Lagrangian Flows on Centre Manifolds,, Lecture Notes in Mathematics. 1489, (1489).
|
[23] |
A. Mielke, A reduction principle for nonautonomous systems in infinite-dimensional spaces,, J. Differential Equations, 65 (1986), 68.
doi: 10.1016/0022-0396(86)90042-2. |
[24] |
K. Nakanishi and W. Schlag, Invariant manifolds and dispersive hamiltonian evolution equations,, Zürich Lectures in Advanced Mathematics, (2010).
doi: 10.4171/095. |
[25] |
O. Perron, Über ein vermeintliches Stabilitätskriterium,, Gött. Nachr., (1930), 128. Google Scholar |
[26] |
J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation,, Comment. Math. Helv., 71 (1996), 269.
doi: 10.1007/BF02566420. |
[27] |
J. Shatah and C. Zeng, Orbits homoclinic to centre manifolds of conservative PDEs,, Nonlinearity, 16 (2003), 591.
doi: 10.1088/0951-7715/16/2/314. |
[28] |
C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory,, Comm. Math. Phys., 127 (1990), 479.
doi: 10.1007/BF02104499. |
show all references
References:
[1] |
D. Bambusi, Birkhoff normal form for some nonlinear PDEs,, Comm. Math. Phys., 234 (2003), 253.
doi: 10.1007/s00220-002-0774-4. |
[2] |
D. Bambusi, J.-M. Delort, B. Grébert and J. Szeftel, Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds,, Comm. Pure Appl. Math., 60 (2007), 1665.
doi: 10.1002/cpa.20181. |
[3] |
D. Bambusi and B. Grébert, Birkhoff normal form for PDEs with tame modulus,, Duke Math. J., 135 (2006), 415.
doi: 10.1215/S0012-7094-06-13534-2. |
[4] |
M. Berti, L. Biasco and M. Procesi, KAM theory for the Hamiltonian derivative wave equation,, Annales scientifiques de l'ENS, 46 (2013), 299.
|
[5] |
M. Berti and P. Bolle, Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbbT^d$ and a multiplicative potential,, J. European Math. Society, 15 (2013), 229.
doi: 10.4171/JEMS/361. |
[6] |
M. Berti and C. Carminati, Chaotic dynamics for perturbations of infinite dimensional Hamiltonian systems,, Nonlinear Analysis, 48 (2002), 481.
doi: 10.1016/S0362-546X(00)00200-5. |
[7] |
J. Bourgain, On invariant tori of full dimension for 1D periodic NLS,, J. Funct. Anal., 229 (2005), 62.
doi: 10.1016/j.jfa.2004.10.019. |
[8] |
J.-M. Delort, Long-time Sobolev stability for small solutions of quasi-linear Klein-Gordon equations on the circle,, Trans. Amer. Math. Soc., 361 (2009), 4299.
doi: 10.1090/S0002-9947-09-04747-3. |
[9] |
L. H. Eliasson et S. B. Kuksin, KAM for the nonlinear Schrödinger equation,, Ann. of Math., 172 (2010), 371.
doi: 10.4007/annals.2010.172.371. |
[10] |
B. Grébert, T. Jézéquel and L. Thomann, Stability of large periodic solutions of Klein-Gordon near a homoclinic orbit,, , (). Google Scholar |
[11] |
B. Grébert and L. Thomann, KAM for the quantum harmonic oscillator,, Comm. Math. Phys., 307 (2011), 383.
doi: 10.1007/s00220-011-1327-5. |
[12] |
M. Groves and G. Schneider, Modulating pulse solutions for a class of nonlinear wave equations,, Comm. Math. Phys., 219 (2001), 489.
doi: 10.1007/s002200100423. |
[13] |
M. Groves and G. Schneider, Modulating pulse solutions for quasilinear wave equations,, J. Differential Equations, 219 (2005), 221.
doi: 10.1016/j.jde.2005.01.014. |
[14] |
M. Groves and G. Schneider, Modulating pulse solutions to quadratic quasilinear wave equations over exponentially long length scales,, Comm. Math. Phys., 278 (2008), 567.
doi: 10.1007/s00220-007-0400-6. |
[15] |
B. Helffer, Spectral Theory and Its Applications,, Cambridge Studies in Advanced Mathematics, (2013).
|
[16] |
P.-F. Hsieh and Y. Sibuya, Basic Theory of Ordinary Differential Equations,, Universitext. Springer-Verlag, (1999).
doi: 10.1007/978-1-4612-1506-6. |
[17] |
G. Iooss and M.-C. Pérouème, Perturbed homoclinic solutions in 1:1 resonance vector fields,, J. Differential Equations, 102 (1993), 62.
doi: 10.1006/jdeq.1993.1022. |
[18] |
T. Jézéquel, P. Bernard and E. Lombardi, Homoclinic orbits with many loops near a $0^2i\omega$ resonant fixed point of Hamiltonian systems,, To appear., (). Google Scholar |
[19] |
R. Joly and G. Raugel, A striking correspondence between the dynamics generated by the vector fields and by the scalar parabolic equations,, Confluentes Mathematici, 3 (2011), 471.
doi: 10.1142/S1793744211000369. |
[20] |
E. Lombardi, Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves,, Arch. Rationnal Mech. Anal., 137 (1997), 227.
doi: 10.1007/s002050050029. |
[21] |
E. Lombardi, Oscillatory Integrals and Phenomena Beyond all Algebraic Orders,, Lecture Notes in Mathematics, (1741).
doi: 10.1007/BFb0104102. |
[22] |
A. Mielke, Hamiltonian and Lagrangian Flows on Centre Manifolds,, Lecture Notes in Mathematics. 1489, (1489).
|
[23] |
A. Mielke, A reduction principle for nonautonomous systems in infinite-dimensional spaces,, J. Differential Equations, 65 (1986), 68.
doi: 10.1016/0022-0396(86)90042-2. |
[24] |
K. Nakanishi and W. Schlag, Invariant manifolds and dispersive hamiltonian evolution equations,, Zürich Lectures in Advanced Mathematics, (2010).
doi: 10.4171/095. |
[25] |
O. Perron, Über ein vermeintliches Stabilitätskriterium,, Gött. Nachr., (1930), 128. Google Scholar |
[26] |
J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation,, Comment. Math. Helv., 71 (1996), 269.
doi: 10.1007/BF02566420. |
[27] |
J. Shatah and C. Zeng, Orbits homoclinic to centre manifolds of conservative PDEs,, Nonlinearity, 16 (2003), 591.
doi: 10.1088/0951-7715/16/2/314. |
[28] |
C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory,, Comm. Math. Phys., 127 (1990), 479.
doi: 10.1007/BF02104499. |
[1] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[2] |
Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287 |
[3] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021008 |
[4] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[5] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[6] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[7] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[8] |
Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054 |
[9] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[10] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[11] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[12] |
Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303 |
[13] |
Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[14] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[15] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021025 |
[16] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[17] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[18] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020384 |
[19] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[20] |
Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020370 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]