September  2014, 34(9): 3535-3554. doi: 10.3934/dcds.2014.34.3535

Some results for the Perelman LYH-type inequality

1. 

Department of Mathematics, National Chung Cheng University, 168 University Road, Min-Hsiung, Chia-Yi 621, R.O.C, Taiwan

Received  December 2012 Revised  November 2013 Published  March 2014

Let $(M,g(t))$, $0\le t\le T$, $\partial M\ne\phi$, be a compact $n$-dimensional manifold, $n\ge 2$, with metric $g(t)$ evolving by the Ricci flow such that the second fundamental form of $\partial M$ with respect to the unit outward normal of $\partial M$ is uniformly bounded below on $\partial M\times [0,T]$. We will prove a global Li-Yau gradient estimate for the solution of the generalized conjugate heat equation on $M\times [0,T]$. We will give another proof of Perelman's Li-Yau-Hamilton type inequality for the fundamental solution of the conjugate heat equation on closed manifolds without using the properties of the reduced distance. We will also prove various gradient estimates for the Dirichlet fundamental solution of the conjugate heat equation.
Citation: Shu-Yu Hsu. Some results for the Perelman LYH-type inequality. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3535-3554. doi: 10.3934/dcds.2014.34.3535
References:
[1]

A. Chau, L. F. Tam and C. Yu, Pseudolocality for the Ricci flow and applications, Canad. J. Math., 63 (2011), 55-85. doi: 10.4153/CJM-2010-076-2.

[2]

I. Chavel, Riemannian geometry: A modern introduction, Cambridge University Press, Cambridge, United Kingdom, 1995. doi: 10.1017/CBO9780511616822.

[3]

R. Chen, Neumann eigenvalue estimate on a compact Riemannian manifold, Proc. AMS, 108 (1990), 961-970. doi: 10.1090/S0002-9939-1990-0993745-X.

[4]

B. Chow, P. Lu and L. Ni, Hamilton's Ricci flow, Graduate Studies in Mathematics, vol. 77, Amer. Math. Soc., Providence, R.I., U.S.A., 2006.

[5]

R. S. Hamilton, The formation of singularities in the Ricci flow, in Surveys in differential geometry, vol. 2 International Press, Cambridge, MA, 1995, 7-136.

[6]

S. Y. Hsu, Uniqueness of solutions of Ricci flow on complete noncompact manifolds,, , (). 

[7]

S. Kuang and Q. S. Zhang, A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow, J. Funct. Anal., 255 (2008), 1008-1023. doi: 10.1016/j.jfa.2008.05.014.

[8]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Mono. Vol 23, Amer. Math. Soc., Providence, R.I., 1968.

[9]

P. Li and S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153-201. doi: 10.1007/BF02399203.

[10]

L. Ni, The entropy formula for linear heat equation, J. Geometric Analysis, 14 (2004), 87-100. doi: 10.1007/BF02921867.

[11]

L. Ni, Addenda to "The entropy formula for linear heat equation'', J. Geometric Analysis, 14 (2004), 369-374. doi: 10.1007/BF02922078.

[12]

L. Ni, A note on Perelman's LYH-type inequality, Comm. Anal. and Geom., 14 (2006), 883-905. doi: 10.4310/CAG.2006.v14.n5.a3.

[13]

G. Perelman, The entropy formula for the Ricci flow and its geometric applications,, , (). 

[14]

R. Schoen and S. T. Yau, Lectures on Differential Geometry, International Press, 1994.

[15]

P. Souplet and Q. S. Zhang, Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds, Bull. London math. Soc., 38 (2006), 1045-1053. doi: 10.1112/S0024609306018947.

[16]

J. Wang, Global heat kernel estimates, Pacific J. Math., 178(2) (1997), 377-398. doi: 10.2140/pjm.1997.178.377.

[17]

F. W. Warner, Extension of the Rauch comparison theorem to submanifolds, Trans. Amer. Math. Soc., 122 (1966), 341-356.

[18]

Q. S. Zhang, Some gradient estimates for the heat equation on domains and for an equation by Perelman, Int. Math. Res. Notice, (2006), Art. ID 92314, 39 pp. doi: 10.1155/IMRN/2006/92314.

show all references

References:
[1]

A. Chau, L. F. Tam and C. Yu, Pseudolocality for the Ricci flow and applications, Canad. J. Math., 63 (2011), 55-85. doi: 10.4153/CJM-2010-076-2.

[2]

I. Chavel, Riemannian geometry: A modern introduction, Cambridge University Press, Cambridge, United Kingdom, 1995. doi: 10.1017/CBO9780511616822.

[3]

R. Chen, Neumann eigenvalue estimate on a compact Riemannian manifold, Proc. AMS, 108 (1990), 961-970. doi: 10.1090/S0002-9939-1990-0993745-X.

[4]

B. Chow, P. Lu and L. Ni, Hamilton's Ricci flow, Graduate Studies in Mathematics, vol. 77, Amer. Math. Soc., Providence, R.I., U.S.A., 2006.

[5]

R. S. Hamilton, The formation of singularities in the Ricci flow, in Surveys in differential geometry, vol. 2 International Press, Cambridge, MA, 1995, 7-136.

[6]

S. Y. Hsu, Uniqueness of solutions of Ricci flow on complete noncompact manifolds,, , (). 

[7]

S. Kuang and Q. S. Zhang, A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow, J. Funct. Anal., 255 (2008), 1008-1023. doi: 10.1016/j.jfa.2008.05.014.

[8]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Mono. Vol 23, Amer. Math. Soc., Providence, R.I., 1968.

[9]

P. Li and S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153-201. doi: 10.1007/BF02399203.

[10]

L. Ni, The entropy formula for linear heat equation, J. Geometric Analysis, 14 (2004), 87-100. doi: 10.1007/BF02921867.

[11]

L. Ni, Addenda to "The entropy formula for linear heat equation'', J. Geometric Analysis, 14 (2004), 369-374. doi: 10.1007/BF02922078.

[12]

L. Ni, A note on Perelman's LYH-type inequality, Comm. Anal. and Geom., 14 (2006), 883-905. doi: 10.4310/CAG.2006.v14.n5.a3.

[13]

G. Perelman, The entropy formula for the Ricci flow and its geometric applications,, , (). 

[14]

R. Schoen and S. T. Yau, Lectures on Differential Geometry, International Press, 1994.

[15]

P. Souplet and Q. S. Zhang, Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds, Bull. London math. Soc., 38 (2006), 1045-1053. doi: 10.1112/S0024609306018947.

[16]

J. Wang, Global heat kernel estimates, Pacific J. Math., 178(2) (1997), 377-398. doi: 10.2140/pjm.1997.178.377.

[17]

F. W. Warner, Extension of the Rauch comparison theorem to submanifolds, Trans. Amer. Math. Soc., 122 (1966), 341-356.

[18]

Q. S. Zhang, Some gradient estimates for the heat equation on domains and for an equation by Perelman, Int. Math. Res. Notice, (2006), Art. ID 92314, 39 pp. doi: 10.1155/IMRN/2006/92314.

[1]

Piotr Pokora. The orbifold Langer-Miyaoka-Yau Inequality and Hirzebruch-type inequalities. Electronic Research Announcements, 2017, 24: 21-27. doi: 10.3934/era.2017.24.003

[2]

Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093

[3]

Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393

[4]

Bin Liu. Quasiperiodic solutions of semilinear Liénard equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 137-160. doi: 10.3934/dcds.2005.12.137

[5]

Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703

[6]

Tiantian Ma, Zaihong Wang. Periodic solutions of Liénard equations with resonant isochronous potentials. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1563-1581. doi: 10.3934/dcds.2013.33.1563

[7]

Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043

[8]

Stephen Coughlan, Łukasz Gołębiowski, Grzegorz Kapustka, Michał Kapustka. Arithmetically Gorenstein Calabi--Yau threefolds in $\mathbb{P}^7$. Electronic Research Announcements, 2016, 23: 52-68. doi: 10.3934/era.2016.23.006

[9]

Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983

[10]

Na Li, Maoan Han, Valery G. Romanovski. Cyclicity of some Liénard Systems. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2127-2150. doi: 10.3934/cpaa.2015.14.2127

[11]

A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126

[12]

Tracy L. Payne. The Ricci flow for nilmanifolds. Journal of Modern Dynamics, 2010, 4 (1) : 65-90. doi: 10.3934/jmd.2010.4.65

[13]

Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557

[14]

Robert Roussarie. Putting a boundary to the space of Liénard equations. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 441-448. doi: 10.3934/dcds.2007.17.441

[15]

Daniel Gonçalves, Bruno Brogni Uggioni. Li-Yorke Chaos for ultragraph shift spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2347-2365. doi: 10.3934/dcds.2020117

[16]

Roberta Filippucci, Chiara Lini. Existence of solutions for quasilinear Dirichlet problems with gradient terms. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 267-286. doi: 10.3934/dcdss.2019019

[17]

P. Álvarez-Caudevilla, J. D. Evans, V. A. Galaktionov. The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 807-827. doi: 10.3934/dcds.2015.35.807

[18]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[19]

Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539

[20]

Isaac A. García, Jaume Giné, Jaume Llibre. Liénard and Riccati differential equations related via Lie Algebras. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 485-494. doi: 10.3934/dcdsb.2008.10.485

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]