    September  2014, 34(9): 3555-3574. doi: 10.3934/dcds.2014.34.3555

## An averaging theorem for nonlinear Schrödinger equations with small nonlinearities

 1 Centre Mathémathiques Laurent Schwartz, École Polytechnique, Palaiseau, 91125, France

Received  July 2013 Revised  December 2013 Published  March 2014

Consider nonlinear Schrödinger equations with small nonlinearities $\frac{d}{dt}u+i(-\triangle u+V(x)u)=\epsilon \mathcal{P}(\triangle u,\nabla u,u,x), x\in \mathbb{T}^d. (*)$ Let $\{\zeta_1(x),\zeta_2(x),\dots\}$ be the $L_2$-basis formed by eigenfunctions of the operator $-\triangle +V(x)$. For any complex function $u(x)$, write it as $u(x) = \sum_{k≥1} v_k \zeta_k (x)$ and set $I_k(u)=\frac{1}{2}|v_k|^2$. Then for any solution $u(t,x)$ of the linear equation $(*)_{\epsilon=0}$ we have $I(u(t,\cdot))=const$. In this work it is proved that if $(*)$ is well posed on time-intervals $t≲\epsilon^{-1}$ and satisfies there some mild a-priori assumptions, then for any its solution $u^{\epsilon}(t,x)$, the limiting behavior of the curve $I(u^{\epsilon}(t,\cdot))$ on time intervals of order $\epsilon^{-1}$, as $\epsilon\to0$, can be uniquely characterized by solutions of a certain well-posed effective equation.
Citation: Guan Huang. An averaging theorem for nonlinear Schrödinger equations with small nonlinearities. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3555-3574. doi: 10.3934/dcds.2014.34.3555
##### References:
  D. Bambusi, Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equation,, Math. Z., 230 (1999), 345.  doi: 10.1007/PL00004696.  Google Scholar  D. Bambusi, Galerkin averaging method and Poincaré normal form for some quasilnear PDEs,, Ann. Scuola Norm. Sup. Pisa C1. Sci., IV (2005), 669. Google Scholar  D. Bambusi and B. Grebert, Forme normale pour NLS en dimension quelconque,, Comptes Rendus Mathématique, 337 (2003), 409.  doi: 10.1016/S1631-073X(03)00368-6.  Google Scholar  V. Bogachev, Differentiable Measures and the Malliavin Calculus,, American Mathematical Society, (2010). Google Scholar  V. Bogachev and I. Malofeev, On the absolute continuity of the distributions of smooth functions on infinite-dimensional spaces with measures,, preprint, (2013).   Google Scholar  J. Bourgain, On diffusion in high-dimensional Hamiltonian systems and PDEs,, Journal d'Analyse Mathématique, 80 (2000), 1.  doi: 10.1007/BF02791532.  Google Scholar  G. Huang, An averaging theorem for a perturbed KdV equation,, Nonlinearity, 26 (2013), 1599.  doi: 10.1088/0951-7715/26/6/1599.  Google Scholar  T. Kappeler and S. Kuksin, Strong non-resonance of Schrédinger operators and an averaging theorem,, Physica D, 86 (1995), 349.  doi: 10.1016/0167-2789(95)00115-K.  Google Scholar  S. Kuksin, Damped-driven KdV and effective equations for long-time behavior of its solutions,, GAFA, 20 (2010), 1431.  doi: 10.1007/s00039-010-0103-6.  Google Scholar  S. Kuksin, Weakly nonlinear stochastic CGL equations,, Annales de l'insitut Henri Poincaré-Probabilité et Statistiques, 49 (2013), 915.  doi: 10.1214/11-AIHP482.  Google Scholar  S. Kuksin and A. Piatnitski, Khasminskii-Whitham averaging for randomly perturbed KdV equation,, J. Math. Pures Appl., 89 (2008), 400.  doi: 10.1016/j.matpur.2007.12.003.  Google Scholar  P. Lochak and C. Meunier, Multiphase Averaging for Classical Systems,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4612-1044-3.  Google Scholar  J. Pöschel, On Nekhoroshev estimates for a nonlinear Schrödinger equation and a theorem by Bambusi,, Nonlinearity, 12 (1999), 1587.  doi: 10.1088/0951-7715/12/6/310.  Google Scholar  T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations,, de Gruyter, (1996).  doi: 10.1515/9783110812411.  Google Scholar  H. Whitney, Differentiable even functions,, Duke Math. Journal, 10 (1943), 159.  doi: 10.1215/S0012-7094-43-01015-4.  Google Scholar

show all references

##### References:
  D. Bambusi, Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equation,, Math. Z., 230 (1999), 345.  doi: 10.1007/PL00004696.  Google Scholar  D. Bambusi, Galerkin averaging method and Poincaré normal form for some quasilnear PDEs,, Ann. Scuola Norm. Sup. Pisa C1. Sci., IV (2005), 669. Google Scholar  D. Bambusi and B. Grebert, Forme normale pour NLS en dimension quelconque,, Comptes Rendus Mathématique, 337 (2003), 409.  doi: 10.1016/S1631-073X(03)00368-6.  Google Scholar  V. Bogachev, Differentiable Measures and the Malliavin Calculus,, American Mathematical Society, (2010). Google Scholar  V. Bogachev and I. Malofeev, On the absolute continuity of the distributions of smooth functions on infinite-dimensional spaces with measures,, preprint, (2013).   Google Scholar  J. Bourgain, On diffusion in high-dimensional Hamiltonian systems and PDEs,, Journal d'Analyse Mathématique, 80 (2000), 1.  doi: 10.1007/BF02791532.  Google Scholar  G. Huang, An averaging theorem for a perturbed KdV equation,, Nonlinearity, 26 (2013), 1599.  doi: 10.1088/0951-7715/26/6/1599.  Google Scholar  T. Kappeler and S. Kuksin, Strong non-resonance of Schrédinger operators and an averaging theorem,, Physica D, 86 (1995), 349.  doi: 10.1016/0167-2789(95)00115-K.  Google Scholar  S. Kuksin, Damped-driven KdV and effective equations for long-time behavior of its solutions,, GAFA, 20 (2010), 1431.  doi: 10.1007/s00039-010-0103-6.  Google Scholar  S. Kuksin, Weakly nonlinear stochastic CGL equations,, Annales de l'insitut Henri Poincaré-Probabilité et Statistiques, 49 (2013), 915.  doi: 10.1214/11-AIHP482.  Google Scholar  S. Kuksin and A. Piatnitski, Khasminskii-Whitham averaging for randomly perturbed KdV equation,, J. Math. Pures Appl., 89 (2008), 400.  doi: 10.1016/j.matpur.2007.12.003.  Google Scholar  P. Lochak and C. Meunier, Multiphase Averaging for Classical Systems,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4612-1044-3.  Google Scholar  J. Pöschel, On Nekhoroshev estimates for a nonlinear Schrödinger equation and a theorem by Bambusi,, Nonlinearity, 12 (1999), 1587.  doi: 10.1088/0951-7715/12/6/310.  Google Scholar  T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations,, de Gruyter, (1996).  doi: 10.1515/9783110812411.  Google Scholar  H. Whitney, Differentiable even functions,, Duke Math. Journal, 10 (1943), 159.  doi: 10.1215/S0012-7094-43-01015-4.  Google Scholar
  Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316  Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045  Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339  Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116  Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426  José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376  A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.338