September  2014, 34(9): 3575-3589. doi: 10.3934/dcds.2014.34.3575

Large time behaviour for a nonlocal diffusion - convection equation related with gas dynamics

1. 

Institute of Mathematics "Simion Stoilow" of the Romanian Academy, 21 Calea Grivitei Street, 010702 Bucharest, Romania

2. 

Instituto de Matemática, Universidade Federal do Rio de Janeiro, P.O. Box 68530, CEP 21941-909, Rio de Janeiro, RJ, Brazil

Received  June 2013 Revised  November 2013 Published  March 2014

In this paper we consider a model that involves nonlocal diffusion and a classical convective term. Using a scaling argument and a new compactness argument we obtain the first term in the asymptotic behavior of the solutions. Such scaling argument is very common for the study of long time behavior of solutions to evolutionary problems where a scaling invariance of the main part of the operator is present.
Citation: Liviu I. Ignat, Ademir F. Pazoto. Large time behaviour for a nonlocal diffusion - convection equation related with gas dynamics. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3575-3589. doi: 10.3934/dcds.2014.34.3575
References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems,, Mathematical Surveys and Monographs, (2010). Google Scholar

[2]

J. Bourgain, H. Brezis and P. Mironescu, Optimal control and partial differential equations,, in Proceedings of the conference in honour of Professor Alain Bensoussan's 60th birthday, (2001), 439. Google Scholar

[3]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext, (2011). Google Scholar

[4]

M. Escobedo and E. Zuazua, Large time behavior for convection-diffusion equations in $R^N$,, J. Funct. Anal., 100 (1991), 119. doi: 10.1016/0022-1236(91)90105-E. Google Scholar

[5]

M. Escobedo, J. L. Vázquez and E. Zuazua, Asymptotic behaviour and source-type solutions for a diffusion-convection equation,, Arch. Rational Mech. Anal., 124 (1993), 43. doi: 10.1007/BF00392203. Google Scholar

[6]

K. Hammer, Non-linear effects on the propagation of sound waves in a radiating gas,, Quart. J. Mech. Appl. Math., 24 (1971), 155. doi: 10.1093/qjmam/24.2.155. Google Scholar

[7]

L. I. Ignat, T. I. Ignat and D. Stancu-Dumitru, A compactness tool for the analysis of nonlocal evolution equations,, preprint, (). Google Scholar

[8]

L. I. Ignat and J. D. Rossi, A nonlocal convection-diffusion equation,, J. Funct. Anal., 251 (2007), 399. doi: 10.1016/j.jfa.2007.07.013. Google Scholar

[9]

G. Karch and K. Suzuki, Spikes and diffusion waves in a one-dimensional model of chemotaxis,, Nonlinearity, 23 (2010), 3119. doi: 10.1088/0951-7715/23/12/007. Google Scholar

[10]

C. Lattanzio and P. Marcati, Global well-posedness and relaxation limits of a model for radiating gas,, J. Differential Equations, 190 (2003), 439. doi: 10.1016/S0022-0396(02)00158-4. Google Scholar

[11]

P. Laurençot, Asymptotic self-similarity for a simplified model for radiating gases,, Asymptot. Anal., 42 (2005), 251. Google Scholar

[12]

S. Schochet and E. Tadmor, The regularized Chapman-Enskog expansion for scalar conservation laws,, Arch. Rational Mech. Anal., 119 (1992), 95. doi: 10.1007/BF00375117. Google Scholar

[13]

M. Schonbek, The Fourier splitting method,, Advances in Geometric Analysis and Continuum Mechanics (Stanford, (1995), 269. Google Scholar

[14]

D. Serre, $L^1$-stability of nonlinear waves in scalar conservation laws,, Evolutionary Equations, (2004), 473. Google Scholar

[15]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[16]

J. Terra and N. Wolanski, Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data,, Discrete Contin. Dyn. Syst., 31 (2011), 581. doi: 10.3934/dcds.2011.31.581. Google Scholar

show all references

References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems,, Mathematical Surveys and Monographs, (2010). Google Scholar

[2]

J. Bourgain, H. Brezis and P. Mironescu, Optimal control and partial differential equations,, in Proceedings of the conference in honour of Professor Alain Bensoussan's 60th birthday, (2001), 439. Google Scholar

[3]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext, (2011). Google Scholar

[4]

M. Escobedo and E. Zuazua, Large time behavior for convection-diffusion equations in $R^N$,, J. Funct. Anal., 100 (1991), 119. doi: 10.1016/0022-1236(91)90105-E. Google Scholar

[5]

M. Escobedo, J. L. Vázquez and E. Zuazua, Asymptotic behaviour and source-type solutions for a diffusion-convection equation,, Arch. Rational Mech. Anal., 124 (1993), 43. doi: 10.1007/BF00392203. Google Scholar

[6]

K. Hammer, Non-linear effects on the propagation of sound waves in a radiating gas,, Quart. J. Mech. Appl. Math., 24 (1971), 155. doi: 10.1093/qjmam/24.2.155. Google Scholar

[7]

L. I. Ignat, T. I. Ignat and D. Stancu-Dumitru, A compactness tool for the analysis of nonlocal evolution equations,, preprint, (). Google Scholar

[8]

L. I. Ignat and J. D. Rossi, A nonlocal convection-diffusion equation,, J. Funct. Anal., 251 (2007), 399. doi: 10.1016/j.jfa.2007.07.013. Google Scholar

[9]

G. Karch and K. Suzuki, Spikes and diffusion waves in a one-dimensional model of chemotaxis,, Nonlinearity, 23 (2010), 3119. doi: 10.1088/0951-7715/23/12/007. Google Scholar

[10]

C. Lattanzio and P. Marcati, Global well-posedness and relaxation limits of a model for radiating gas,, J. Differential Equations, 190 (2003), 439. doi: 10.1016/S0022-0396(02)00158-4. Google Scholar

[11]

P. Laurençot, Asymptotic self-similarity for a simplified model for radiating gases,, Asymptot. Anal., 42 (2005), 251. Google Scholar

[12]

S. Schochet and E. Tadmor, The regularized Chapman-Enskog expansion for scalar conservation laws,, Arch. Rational Mech. Anal., 119 (1992), 95. doi: 10.1007/BF00375117. Google Scholar

[13]

M. Schonbek, The Fourier splitting method,, Advances in Geometric Analysis and Continuum Mechanics (Stanford, (1995), 269. Google Scholar

[14]

D. Serre, $L^1$-stability of nonlinear waves in scalar conservation laws,, Evolutionary Equations, (2004), 473. Google Scholar

[15]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65. doi: 10.1007/BF01762360. Google Scholar

[16]

J. Terra and N. Wolanski, Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data,, Discrete Contin. Dyn. Syst., 31 (2011), 581. doi: 10.3934/dcds.2011.31.581. Google Scholar

[1]

Carmen Cortázar, Manuel Elgueta, Fernando Quirós, Noemí Wolanski. Asymptotic behavior for a nonlocal diffusion equation on the half line. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1391-1407. doi: 10.3934/dcds.2015.35.1391

[2]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

[3]

Lorenzo Brasco, Marco Squassina, Yang Yang. Global compactness results for nonlocal problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 391-424. doi: 10.3934/dcdss.2018022

[4]

Yan Zhang. Asymptotic behavior of a nonlocal KPP equation with an almost periodic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5183-5199. doi: 10.3934/dcds.2016025

[5]

Cecilia Cavaterra, Maurizio Grasselli. Asymptotic behavior of population dynamics models with nonlocal distributed delays. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 861-883. doi: 10.3934/dcds.2008.22.861

[6]

Martin Burger, Marco Di Francesco. Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks & Heterogeneous Media, 2008, 3 (4) : 749-785. doi: 10.3934/nhm.2008.3.749

[7]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[8]

Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic & Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013

[9]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[10]

Genni Fragnelli, A. Idrissi, L. Maniar. The asymptotic behavior of a population equation with diffusion and delayed birth process. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 735-754. doi: 10.3934/dcdsb.2007.7.735

[11]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[12]

Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5945-5957. doi: 10.3934/dcdsb.2019114

[13]

Fang-Di Dong, Wan-Tong Li, Jia-Bing Wang. Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6291-6318. doi: 10.3934/dcds.2017272

[14]

Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006

[15]

Huimin Liang, Peixuan Weng, Yanling Tian. Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1471-1495. doi: 10.3934/cpaa.2016.15.1471

[16]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[17]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[18]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[19]

Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure & Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161

[20]

Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]