\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Invariant foliations for random dynamical systems

Abstract Related Papers Cited by
  • We prove the existence of invariant foliations of stable and unstable manifolds of a normally hyperbolic random invariant manifold. The normally hyperbolic random invariant manifold referred to here is that which was shown to exist in a previous paper when a deterministic dynamical system having a normally hyperbolic invariant manifold is subjected to a small random perturbation.
    Mathematics Subject Classification: Primary: 34C37, 34C45, 34F05, 37H10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. M. Arnold, Random Dynamical Systems, Springer, New York, 1998.

    [2]

    P. Bates, K. Lu and C. Zeng, Existence and Persistence of Invariant Manifolds for Semiflows in Banach Space, Memoirs of the AMS, 135 1998, viii+129 pp.doi: 10.1090/memo/0645.

    [3]

    P. Bates, K. Lu and C. Zeng, Persistence of overflowing manifold for semiflow, Comm. Pure Appl. Math., 52 (1999), 983-1046.doi: 10.1002/(SICI)1097-0312(199908)52:8<983::AID-CPA4>3.0.CO;2-O.

    [4]

    P. Bates, K. Lu and C. Zeng, Invariant foliations near normally hyperbolic invariant manifolds for semiflows, Trans. Amer. Math. Soc., 352 (2000), 4641-4676.doi: 10.1090/S0002-9947-00-02503-4.

    [5]

    T. Caraballo, J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for random and stochastic partial differential equations, Adv. Nonlinear Stud., 10 (2010), 23-52.

    [6]

    C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, LNM 580. Springer-Verlag, Berlin-Heidelberg-New York, 1977.

    [7]

    S-N. Chow, K. Lu and X-B. Lin, Smooth foliations for flows in banach space, Journal of Differential Equations, 94 (1991), 266-291.doi: 10.1016/0022-0396(91)90093-O.

    [8]

    P. Drabek and J. Milota, Methods of Nonlinear Analysis Applications to Differential Equations, Birkhäuser Verlag, Basel, 2007.

    [9]

    N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. Journal, 21 (1971), 193-226.doi: 10.1512/iumj.1972.21.21017.

    [10]

    N. Fenichel, Asymptotic stability with rate conditions, Indiana Univ. Math. Journal, 23 (1974), 1109-1137.

    [11]

    N. Fenichel, Asymptotic stability with rate conditions II, Indiana Univ. Math. Journal, 26 (1977), 81-93.doi: 10.1512/iumj.1977.26.26006.

    [12]

    J. Hadamard, Sur l'iteration et les solutions asymptotiques des equations defferentielles, Bull. Soc. Math. France, 29 (1901), 224-228.

    [13]

    M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, New York, 1977.

    [14]

    C. K. R. T. Jones and N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Differential Equations, 108 (1994), 64-88.doi: 10.1006/jdeq.1994.1025.

    [15]

    J. Li, K. Lu and P. Bates, Normally hyperbolic invariant manifolds for random dynamical systems, Trans. Amer. Math. Soc., 365 (2013), 5933-5966.doi: 10.1090/S0002-9947-2013-05825-4.

    [16]

    P-D. Liu and M. Qian, Smooth Ergodic Theory of Random Dynamical Systems, Lecture Notes in Mathematics, 1606. Springer-Verlag, Berlin, 1995.

    [17]

    R. Mañé, Liapunov exponents and stable manifolds for compact transformations, Geometrical dynamics, Lecture Notes in Math., Springer Verlag, New York, 1007 (1983), 522-577.doi: 10.1007/BFb0061433.

    [18]

    W. Li and K. Lu, Sternberg theorems for random dynamical systems, Comm. Pure Appl. Math., 58 (2005), 941-988.doi: 10.1002/cpa.20083.

    [19]

    Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space, Memoirs of the AMS., 206 (2010), vi+106 pp.doi: 10.1090/S0065-9266-10-00574-0.

    [20]

    K. Lu and B. Schmalfuss, Invariant foliations for stochastic partial differential equations, Stoch. Dyn., 8 (2008), 505-518.doi: 10.1142/S0219493708002421.

    [21]

    Y. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory, Russian Math. Surveys, 32 (1977), 55-112.

    [22]

    D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert spaces, Ann. of Math., 115 (1982), 243-290.doi: 10.2307/1971392.

    [23]

    T. Wanner, Linearization of random dynamical systems, Dynamics Reported,, Springer-Verlag, New York, 4 (1995), 203-269.

    [24]

    H. Whitney, Differential manifolds, Ann. of Math., 37 (1936), 645-680.doi: 10.2307/1968482.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(208) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return