September  2014, 34(9): 3639-3666. doi: 10.3934/dcds.2014.34.3639

Invariant foliations for random dynamical systems

1. 

Institute for Mathematics and its Application, University of Minnesota, Minneapolis, MN, 55455, United States

2. 

Department of Mathematics, Brigham Young University, Provo, Utah 84602

3. 

Department of Mathematics, Michigan State University, East Lansing, MI 48824

Received  June 2013 Revised  December 2013 Published  March 2014

We prove the existence of invariant foliations of stable and unstable manifolds of a normally hyperbolic random invariant manifold. The normally hyperbolic random invariant manifold referred to here is that which was shown to exist in a previous paper when a deterministic dynamical system having a normally hyperbolic invariant manifold is subjected to a small random perturbation.
Citation: Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639
References:
[1]

L. M. Arnold, Random Dynamical Systems,, Springer, (1998).   Google Scholar

[2]

P. Bates, K. Lu and C. Zeng, Existence and Persistence of Invariant Manifolds for Semiflows in Banach Space,, Memoirs of the AMS, 135 (1998).  doi: 10.1090/memo/0645.  Google Scholar

[3]

P. Bates, K. Lu and C. Zeng, Persistence of overflowing manifold for semiflow,, Comm. Pure Appl. Math., 52 (1999), 983.  doi: 10.1002/(SICI)1097-0312(199908)52:8<983::AID-CPA4>3.0.CO;2-O.  Google Scholar

[4]

P. Bates, K. Lu and C. Zeng, Invariant foliations near normally hyperbolic invariant manifolds for semiflows,, Trans. Amer. Math. Soc., 352 (2000), 4641.  doi: 10.1090/S0002-9947-00-02503-4.  Google Scholar

[5]

T. Caraballo, J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for random and stochastic partial differential equations,, Adv. Nonlinear Stud., 10 (2010), 23.   Google Scholar

[6]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions,, LNM 580. Springer-Verlag, (1977).   Google Scholar

[7]

S-N. Chow, K. Lu and X-B. Lin, Smooth foliations for flows in banach space,, Journal of Differential Equations, 94 (1991), 266.  doi: 10.1016/0022-0396(91)90093-O.  Google Scholar

[8]

P. Drabek and J. Milota, Methods of Nonlinear Analysis Applications to Differential Equations,, Birkhäuser Verlag, (2007).   Google Scholar

[9]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows,, Indiana Univ. Math. Journal, 21 (1971), 193.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[10]

N. Fenichel, Asymptotic stability with rate conditions,, Indiana Univ. Math. Journal, 23 (1974), 1109.   Google Scholar

[11]

N. Fenichel, Asymptotic stability with rate conditions II,, Indiana Univ. Math. Journal, 26 (1977), 81.  doi: 10.1512/iumj.1977.26.26006.  Google Scholar

[12]

J. Hadamard, Sur l'iteration et les solutions asymptotiques des equations defferentielles,, Bull. Soc. Math. France, 29 (1901), 224.   Google Scholar

[13]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, 583 (1977).   Google Scholar

[14]

C. K. R. T. Jones and N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems,, J. Differential Equations, 108 (1994), 64.  doi: 10.1006/jdeq.1994.1025.  Google Scholar

[15]

J. Li, K. Lu and P. Bates, Normally hyperbolic invariant manifolds for random dynamical systems,, Trans. Amer. Math. Soc., 365 (2013), 5933.  doi: 10.1090/S0002-9947-2013-05825-4.  Google Scholar

[16]

P-D. Liu and M. Qian, Smooth Ergodic Theory of Random Dynamical Systems,, Lecture Notes in Mathematics, (1606).   Google Scholar

[17]

R. Mañé, Liapunov exponents and stable manifolds for compact transformations, Geometrical dynamics,, Lecture Notes in Math., 1007 (1983), 522.  doi: 10.1007/BFb0061433.  Google Scholar

[18]

W. Li and K. Lu, Sternberg theorems for random dynamical systems,, Comm. Pure Appl. Math., 58 (2005), 941.  doi: 10.1002/cpa.20083.  Google Scholar

[19]

Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space,, Memoirs of the AMS., 206 (2010).  doi: 10.1090/S0065-9266-10-00574-0.  Google Scholar

[20]

K. Lu and B. Schmalfuss, Invariant foliations for stochastic partial differential equations,, Stoch. Dyn., 8 (2008), 505.  doi: 10.1142/S0219493708002421.  Google Scholar

[21]

Y. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory,, Russian Math. Surveys, 32 (1977), 55.   Google Scholar

[22]

D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert spaces,, Ann. of Math., 115 (1982), 243.  doi: 10.2307/1971392.  Google Scholar

[23]

T. Wanner, Linearization of random dynamical systems,, Dynamics Reported, 4 (1995), 203.   Google Scholar

[24]

H. Whitney, Differential manifolds,, Ann. of Math., 37 (1936), 645.  doi: 10.2307/1968482.  Google Scholar

show all references

References:
[1]

L. M. Arnold, Random Dynamical Systems,, Springer, (1998).   Google Scholar

[2]

P. Bates, K. Lu and C. Zeng, Existence and Persistence of Invariant Manifolds for Semiflows in Banach Space,, Memoirs of the AMS, 135 (1998).  doi: 10.1090/memo/0645.  Google Scholar

[3]

P. Bates, K. Lu and C. Zeng, Persistence of overflowing manifold for semiflow,, Comm. Pure Appl. Math., 52 (1999), 983.  doi: 10.1002/(SICI)1097-0312(199908)52:8<983::AID-CPA4>3.0.CO;2-O.  Google Scholar

[4]

P. Bates, K. Lu and C. Zeng, Invariant foliations near normally hyperbolic invariant manifolds for semiflows,, Trans. Amer. Math. Soc., 352 (2000), 4641.  doi: 10.1090/S0002-9947-00-02503-4.  Google Scholar

[5]

T. Caraballo, J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for random and stochastic partial differential equations,, Adv. Nonlinear Stud., 10 (2010), 23.   Google Scholar

[6]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions,, LNM 580. Springer-Verlag, (1977).   Google Scholar

[7]

S-N. Chow, K. Lu and X-B. Lin, Smooth foliations for flows in banach space,, Journal of Differential Equations, 94 (1991), 266.  doi: 10.1016/0022-0396(91)90093-O.  Google Scholar

[8]

P. Drabek and J. Milota, Methods of Nonlinear Analysis Applications to Differential Equations,, Birkhäuser Verlag, (2007).   Google Scholar

[9]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows,, Indiana Univ. Math. Journal, 21 (1971), 193.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[10]

N. Fenichel, Asymptotic stability with rate conditions,, Indiana Univ. Math. Journal, 23 (1974), 1109.   Google Scholar

[11]

N. Fenichel, Asymptotic stability with rate conditions II,, Indiana Univ. Math. Journal, 26 (1977), 81.  doi: 10.1512/iumj.1977.26.26006.  Google Scholar

[12]

J. Hadamard, Sur l'iteration et les solutions asymptotiques des equations defferentielles,, Bull. Soc. Math. France, 29 (1901), 224.   Google Scholar

[13]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, 583 (1977).   Google Scholar

[14]

C. K. R. T. Jones and N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems,, J. Differential Equations, 108 (1994), 64.  doi: 10.1006/jdeq.1994.1025.  Google Scholar

[15]

J. Li, K. Lu and P. Bates, Normally hyperbolic invariant manifolds for random dynamical systems,, Trans. Amer. Math. Soc., 365 (2013), 5933.  doi: 10.1090/S0002-9947-2013-05825-4.  Google Scholar

[16]

P-D. Liu and M. Qian, Smooth Ergodic Theory of Random Dynamical Systems,, Lecture Notes in Mathematics, (1606).   Google Scholar

[17]

R. Mañé, Liapunov exponents and stable manifolds for compact transformations, Geometrical dynamics,, Lecture Notes in Math., 1007 (1983), 522.  doi: 10.1007/BFb0061433.  Google Scholar

[18]

W. Li and K. Lu, Sternberg theorems for random dynamical systems,, Comm. Pure Appl. Math., 58 (2005), 941.  doi: 10.1002/cpa.20083.  Google Scholar

[19]

Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space,, Memoirs of the AMS., 206 (2010).  doi: 10.1090/S0065-9266-10-00574-0.  Google Scholar

[20]

K. Lu and B. Schmalfuss, Invariant foliations for stochastic partial differential equations,, Stoch. Dyn., 8 (2008), 505.  doi: 10.1142/S0219493708002421.  Google Scholar

[21]

Y. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory,, Russian Math. Surveys, 32 (1977), 55.   Google Scholar

[22]

D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert spaces,, Ann. of Math., 115 (1982), 243.  doi: 10.2307/1971392.  Google Scholar

[23]

T. Wanner, Linearization of random dynamical systems,, Dynamics Reported, 4 (1995), 203.   Google Scholar

[24]

H. Whitney, Differential manifolds,, Ann. of Math., 37 (1936), 645.  doi: 10.2307/1968482.  Google Scholar

[1]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[2]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[3]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[4]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[5]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[6]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[7]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[8]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[9]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[10]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[11]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[12]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[13]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[14]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[15]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[16]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[17]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[18]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[19]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[20]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]