-
Previous Article
Viscous Aubry-Mather theory and the Vlasov equation
- DCDS Home
- This Issue
-
Next Article
Gravitational Field Equations and Theory of Dark Matter and Dark Energy
Ergodicity criteria for non-expanding transformations of 2-adic spheres
1. | Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Leninskiye Gory, 1-52, Moscow, 119991, GSP-1, Russian Federation |
2. | International Center for Mathematical Modeling, Linnæus University, S-35195 Växjö, Sweden, Sweden |
References:
[1] |
S. Albeverio, A. Khrennikov and P. E. Kloeden, Memory retrieval as a p-adic dynamical system, Biosystems, 49 (1999), 105-115.
doi: 10.1016/S0303-2647(98)00035-5. |
[2] |
S. Al'beverio, A. Khrennikov, B. Tirotstsi and S. de Shmedt, $p$-adic dynamical systems, Theor. Math. Phys., 114 (1998), 276-287.
doi: 10.1007/BF02575441. |
[3] |
V. Anashin and A. Khrennikov, "Applied Algebraic Dynamics," de Gruyter Expositions in Mathematics, 49, Walter de Gruyter & Co., Berlin, 2009.
doi: 10.1515/9783110203011. |
[4] |
V. Anashin, Uniformly distributed sequences of p-adic integers, Math. Notes, 55 (1994), 109-133.
doi: 10.1007/BF02113290. |
[5] |
V. S. Anashin, Uniformly distributed sequences in computer algebra or how to construct program generators of random numbers, J. Math. Sci., 89 (1998), 1355-1390.
doi: 10.1007/BF02355442. |
[6] |
V. Anashin, Uniformly distributed sequences of $p$-adic integers, Discrete Math. Appl., 12 (2002), 527-590. |
[7] |
V. Anashin, Ergodic transformations in the space of $p$-adic integers, in "$p$-adic Mathematical Physics" (eds. A. Yu. Khrennikov, Zoran Rakić and I. V. Volovich), AIP Conf. Proc., 826, American Institute of Physics, Melville, New York, (2006), 3-24.
doi: 10.1063/1.2193107. |
[8] |
V. Anashin, Non-Archimedean theory of T-functions, in "Boolean Functions in Cryptology and Information Security," NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 18, IOS, Amsterdam, (2008), 33-57.
doi: 10.3233/978-1-58603-878-6-33. |
[9] |
V. Anashin, Non-Archimedean ergodic theory and pseudorandom generators, The Computer Journal, 53 (2010), 370-392.
doi: 10.1093/comjnl/bxm101. |
[10] |
V. Anashin, Automata finiteness criterion in terms of van der Put series of automata functions, $p$-Adic Numbers Ultrametric Analysis and Applications, 4 (2012), 151-160.
doi: 10.1134/S2070046612020070. |
[11] |
V. S. Anashin, A. Yu. Khrennikov and E. I. Yurova, Characterization of ergodicity of $p$-adic dynamical systems by using the van der Put basis, Doklady Mathematics, 83 (2011), 306-308.
doi: 10.1134/S1064562411030100. |
[12] |
V. Anashin, A. Khrennikov and E. Yurova, Using van der Put basis to determine if a 2-adic function is measure-preserving or ergodic w.r.t. Haar measure, in "Advances in Non-Archimedean Analysis," Contemporary Mathematics, 551, American Mathematical Society, Providence, RI, (2011), 33-38.
doi: 10.1090/conm/551/10883. |
[13] |
V. Anashin, A. Khrennikov and E. Yurova, T-functions revisited: New criteria for bijectivity/transitivity, Designes, Codes and Cryptography, (2012).
doi: 10.1007/s10623-012-9741-z. |
[14] |
D. K. Arrowsmith and F. Vivaldi, Some p-adic representations of the Smale horseshoe, Phys. Lett. A, 176 (1993), 292-294.
doi: 10.1016/0375-9601(93)90920-U. |
[15] |
D. K. Arrowsmith and F. Vivaldi, Geometry of p-adic Siegel discs, Physica D, 71 (1994), 222-236.
doi: 10.1016/0167-2789(94)90191-0. |
[16] |
R. Benedetto, $p$-adic dynamics and Sullivans no wandering domain theorem, Compos. Math., 122 (2000), 281-298.
doi: 10.1023/A:1002067315057. |
[17] |
R. Benedetto, Hyperbolic maps in $p$-adic dynamics, Ergod. Theory and Dyn. Sys., 21 (2001), 1-11.
doi: 10.1017/S0143385701001043. |
[18] |
R. Benedetto, Components and periodic points in non-Archimedean dynamics, Proc. London Math. Soc. (3), 84 (2002), 231-256.
doi: 10.1112/plms/84.1.231. |
[19] |
R. Benedetto, Heights and preperiodic points of polynomials over function fields, Int. Math. Res. Notices, 2005, 3855-3866.
doi: 10.1155/IMRN.2005.3855. |
[20] |
J.-L. Chabert, A.-H. Fan and Y. Fares, Minimal dynamical systems on a discrete valuation domain, Discrete and Continuous Dynamical Systems, 25 (2009), 777-795.
doi: 10.3934/dcds.2009.25.777. |
[21] |
Z. Coelho and W. Parry, Ergodicity of p-adic multiplication and the distribution of Fibonacci numbers, in "Topology, Ergodic Theory, Real Algebraic Geometry," Amer. Math. Soc. Transl. Ser. 2, 202, American Mathematical Society, Providence, RI, (2001), 51-70. |
[22] |
A.-H. Fan, M.-T. Li, J.-Y. Yao and D. Zhou, $p$-adic affine dynamical systems and applications, C. R. Acad. Sci. Paris, 342 (2006), 129-134.
doi: 10.1016/j.crma.2005.11.017. |
[23] |
A.-H. Fan, M.-T. Li, J.-Y. Yao and D. Zhou, Strict ergodicity of affine $p$-adic dynamical systems on $\mathbbZ_p$, Adv. Math., 214 (2007), 666-700.
doi: 10.1016/j.aim.2007.03.003. |
[24] |
A.-H. Fan, L. Liao, Y.-F. Wang and D. Zhou, $p$-adic repellers in $\mathbb Q_p$ are subshifts of finite type, C. R. Math. Acad. Sci. Paris, 344 (2007), 219-224.
doi: 10.1016/j.crma.2006.12.007. |
[25] |
C. Favre and J. Rivera-Letelier, Theorème d'equidistribution de Brolin en dynamique $p$-adique, C. R. Math. Acad. Sci. Paris, 339 (2004), 271-276.
doi: 10.1016/j.crma.2004.06.023. |
[26] |
M. Gundlach, A. Khrennikov and K.-O. Lindahl, On ergodic behaviour of $p$-adic dynamical systems, Infinite Dimensional Analysis, Quantum Prob. and Related Top., 4 (2001), 569-577.
doi: 10.1142/S0219025701000632. |
[27] |
M. Gundlach, A. Khrennikov and K.-O. Lindahl, Topological transitivity for $p$-adic dynamical systems, in "$p$-adic Functional Analysis" (Ioannina, 2000), Lecture Notes in Pure and Applied Mathematics, 222, Dekker, New York, (2001), 127-132. |
[28] |
A. Khrennikov and M. Nilsson, "$p$-adic Deterministic and Random Dynamics," Mathematics and its Applications, 574, Kluwer Academic Publishers, Dordrecht, 2004. |
[29] |
J. Kingsbery, A. Levin, A. Preygel and C. E. Silva, On measure-preserving $C^1$ transformations of compact-open subsets of non-Archimedean local fields, Trans. Amer. Math. Soc., 361 (2009), 61-85.
doi: 10.1090/S0002-9947-08-04686-2. |
[30] |
J. Kingsbery, A. Levin, A. Preygel and C. E. Silva, Dynamics of the $p$-adic shift and applications, Discrete and Continuoius Dynamical Systems, 30 (2011), 209-218.
doi: 10.3934/dcds.2011.30.209. |
[31] |
M. V. Larin, Transitive polynomial transformations of residue rings, Discrete Math. Appl., 12 (2002), 127-140. |
[32] |
D.-D. Lin, T. Shi and Z.-F. Yang, Ergodic theory over $\mathbb F_2[[X]]$, Finite Fields Appl., 18 (2012), 473-491.
doi: 10.1016/j.ffa.2011.11.001. |
[33] |
K.-O. Lindahl, On Siegel's linearization theorem for fields of prime characteristic, Nonlinearity, 17 (2004), 745-763.
doi: 10.1088/0951-7715/17/3/001. |
[34] |
K. Mahler, "$p$-adic Numbers and their Functions," Second edition, Cambridge Tracts in Mathematics, 76, Cambridge Univ. Press, Cambridge-New York, 1981. |
[35] |
M. van der Put, Algèbres de fonctions continues $p$-adiques. II, (French) Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math., 30 (1968), 412-420 |
[36] |
J. Rivera-Letelier, "Dynamique des Fonctions Rationelles sur des Corps Locaux," Ph.D thesis, Orsay, 2000. |
[37] |
J. Rivera-Letelier, Dynamique des fonctions rationelles sur des corps locaux, Asterisque, 287 (2003), 147-230. |
[38] |
J. Rivera-Letelier, Espace hyperbolique $p$-adique et dynamique des fonctions rationelles, Compos. Math., 138 (2003), 199-231.
doi: 10.1023/A:1026136530383. |
[39] |
S. De Smedt and A. Khrennikov, A $p$-adic behaviour of dynamical systems, Rev. Mat. Complut., 12 (1999), 301-323. |
[40] |
W. H. Schikhof, "Ultrametric Calculus. An Introduction to $p$-adic Analysis," Cambridge Studies in Advanced Mathematics, 4, Cambridge University Press, Cambridge, 1984. |
[41] |
J. H. Silverman, "The Arithmetic of Dynamical Systems," Graduate Texts in Mathematics, 241, Springer, New York, 2007.
doi: 10.1007/978-0-387-69904-2. |
[42] |
F. Vivaldi, The arithmetic of discretized rotations, in "$p$-adic Mathematical Physics" (eds. A. Yu. Khrennikov, Zoran Rakić and I. V. Volovich), AIP Conference Proceedings, 826, American Institute of Physics, Melville, New York, (2006), 162-173.
doi: 10.1063/1.2193120. |
[43] |
F. Vivaldi and I. Vladimirov, Pseudo-randomness of round-off errors in discretized linear maps on the plane, Int. J. of Bifurcations and Chaos Appl. Sci. Engrg., 13 (2003), 3373-3393.
doi: 10.1142/S0218127403008557. |
[44] |
F. Vivaldi, Algebraic and arithmetic dynamics bibliographical database. Available from: http://www.maths.qmul.ac.uk/~fv/database/algdyn.pdf. |
[45] |
E. I. Yurova, Van der Put basis and $p$-adic dynamics, $p$-Adic Numbers, Ultrametric Analysis and Applications, 2 (2010), 175-178.
doi: 10.1134/S207004661002007X. |
show all references
References:
[1] |
S. Albeverio, A. Khrennikov and P. E. Kloeden, Memory retrieval as a p-adic dynamical system, Biosystems, 49 (1999), 105-115.
doi: 10.1016/S0303-2647(98)00035-5. |
[2] |
S. Al'beverio, A. Khrennikov, B. Tirotstsi and S. de Shmedt, $p$-adic dynamical systems, Theor. Math. Phys., 114 (1998), 276-287.
doi: 10.1007/BF02575441. |
[3] |
V. Anashin and A. Khrennikov, "Applied Algebraic Dynamics," de Gruyter Expositions in Mathematics, 49, Walter de Gruyter & Co., Berlin, 2009.
doi: 10.1515/9783110203011. |
[4] |
V. Anashin, Uniformly distributed sequences of p-adic integers, Math. Notes, 55 (1994), 109-133.
doi: 10.1007/BF02113290. |
[5] |
V. S. Anashin, Uniformly distributed sequences in computer algebra or how to construct program generators of random numbers, J. Math. Sci., 89 (1998), 1355-1390.
doi: 10.1007/BF02355442. |
[6] |
V. Anashin, Uniformly distributed sequences of $p$-adic integers, Discrete Math. Appl., 12 (2002), 527-590. |
[7] |
V. Anashin, Ergodic transformations in the space of $p$-adic integers, in "$p$-adic Mathematical Physics" (eds. A. Yu. Khrennikov, Zoran Rakić and I. V. Volovich), AIP Conf. Proc., 826, American Institute of Physics, Melville, New York, (2006), 3-24.
doi: 10.1063/1.2193107. |
[8] |
V. Anashin, Non-Archimedean theory of T-functions, in "Boolean Functions in Cryptology and Information Security," NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 18, IOS, Amsterdam, (2008), 33-57.
doi: 10.3233/978-1-58603-878-6-33. |
[9] |
V. Anashin, Non-Archimedean ergodic theory and pseudorandom generators, The Computer Journal, 53 (2010), 370-392.
doi: 10.1093/comjnl/bxm101. |
[10] |
V. Anashin, Automata finiteness criterion in terms of van der Put series of automata functions, $p$-Adic Numbers Ultrametric Analysis and Applications, 4 (2012), 151-160.
doi: 10.1134/S2070046612020070. |
[11] |
V. S. Anashin, A. Yu. Khrennikov and E. I. Yurova, Characterization of ergodicity of $p$-adic dynamical systems by using the van der Put basis, Doklady Mathematics, 83 (2011), 306-308.
doi: 10.1134/S1064562411030100. |
[12] |
V. Anashin, A. Khrennikov and E. Yurova, Using van der Put basis to determine if a 2-adic function is measure-preserving or ergodic w.r.t. Haar measure, in "Advances in Non-Archimedean Analysis," Contemporary Mathematics, 551, American Mathematical Society, Providence, RI, (2011), 33-38.
doi: 10.1090/conm/551/10883. |
[13] |
V. Anashin, A. Khrennikov and E. Yurova, T-functions revisited: New criteria for bijectivity/transitivity, Designes, Codes and Cryptography, (2012).
doi: 10.1007/s10623-012-9741-z. |
[14] |
D. K. Arrowsmith and F. Vivaldi, Some p-adic representations of the Smale horseshoe, Phys. Lett. A, 176 (1993), 292-294.
doi: 10.1016/0375-9601(93)90920-U. |
[15] |
D. K. Arrowsmith and F. Vivaldi, Geometry of p-adic Siegel discs, Physica D, 71 (1994), 222-236.
doi: 10.1016/0167-2789(94)90191-0. |
[16] |
R. Benedetto, $p$-adic dynamics and Sullivans no wandering domain theorem, Compos. Math., 122 (2000), 281-298.
doi: 10.1023/A:1002067315057. |
[17] |
R. Benedetto, Hyperbolic maps in $p$-adic dynamics, Ergod. Theory and Dyn. Sys., 21 (2001), 1-11.
doi: 10.1017/S0143385701001043. |
[18] |
R. Benedetto, Components and periodic points in non-Archimedean dynamics, Proc. London Math. Soc. (3), 84 (2002), 231-256.
doi: 10.1112/plms/84.1.231. |
[19] |
R. Benedetto, Heights and preperiodic points of polynomials over function fields, Int. Math. Res. Notices, 2005, 3855-3866.
doi: 10.1155/IMRN.2005.3855. |
[20] |
J.-L. Chabert, A.-H. Fan and Y. Fares, Minimal dynamical systems on a discrete valuation domain, Discrete and Continuous Dynamical Systems, 25 (2009), 777-795.
doi: 10.3934/dcds.2009.25.777. |
[21] |
Z. Coelho and W. Parry, Ergodicity of p-adic multiplication and the distribution of Fibonacci numbers, in "Topology, Ergodic Theory, Real Algebraic Geometry," Amer. Math. Soc. Transl. Ser. 2, 202, American Mathematical Society, Providence, RI, (2001), 51-70. |
[22] |
A.-H. Fan, M.-T. Li, J.-Y. Yao and D. Zhou, $p$-adic affine dynamical systems and applications, C. R. Acad. Sci. Paris, 342 (2006), 129-134.
doi: 10.1016/j.crma.2005.11.017. |
[23] |
A.-H. Fan, M.-T. Li, J.-Y. Yao and D. Zhou, Strict ergodicity of affine $p$-adic dynamical systems on $\mathbbZ_p$, Adv. Math., 214 (2007), 666-700.
doi: 10.1016/j.aim.2007.03.003. |
[24] |
A.-H. Fan, L. Liao, Y.-F. Wang and D. Zhou, $p$-adic repellers in $\mathbb Q_p$ are subshifts of finite type, C. R. Math. Acad. Sci. Paris, 344 (2007), 219-224.
doi: 10.1016/j.crma.2006.12.007. |
[25] |
C. Favre and J. Rivera-Letelier, Theorème d'equidistribution de Brolin en dynamique $p$-adique, C. R. Math. Acad. Sci. Paris, 339 (2004), 271-276.
doi: 10.1016/j.crma.2004.06.023. |
[26] |
M. Gundlach, A. Khrennikov and K.-O. Lindahl, On ergodic behaviour of $p$-adic dynamical systems, Infinite Dimensional Analysis, Quantum Prob. and Related Top., 4 (2001), 569-577.
doi: 10.1142/S0219025701000632. |
[27] |
M. Gundlach, A. Khrennikov and K.-O. Lindahl, Topological transitivity for $p$-adic dynamical systems, in "$p$-adic Functional Analysis" (Ioannina, 2000), Lecture Notes in Pure and Applied Mathematics, 222, Dekker, New York, (2001), 127-132. |
[28] |
A. Khrennikov and M. Nilsson, "$p$-adic Deterministic and Random Dynamics," Mathematics and its Applications, 574, Kluwer Academic Publishers, Dordrecht, 2004. |
[29] |
J. Kingsbery, A. Levin, A. Preygel and C. E. Silva, On measure-preserving $C^1$ transformations of compact-open subsets of non-Archimedean local fields, Trans. Amer. Math. Soc., 361 (2009), 61-85.
doi: 10.1090/S0002-9947-08-04686-2. |
[30] |
J. Kingsbery, A. Levin, A. Preygel and C. E. Silva, Dynamics of the $p$-adic shift and applications, Discrete and Continuoius Dynamical Systems, 30 (2011), 209-218.
doi: 10.3934/dcds.2011.30.209. |
[31] |
M. V. Larin, Transitive polynomial transformations of residue rings, Discrete Math. Appl., 12 (2002), 127-140. |
[32] |
D.-D. Lin, T. Shi and Z.-F. Yang, Ergodic theory over $\mathbb F_2[[X]]$, Finite Fields Appl., 18 (2012), 473-491.
doi: 10.1016/j.ffa.2011.11.001. |
[33] |
K.-O. Lindahl, On Siegel's linearization theorem for fields of prime characteristic, Nonlinearity, 17 (2004), 745-763.
doi: 10.1088/0951-7715/17/3/001. |
[34] |
K. Mahler, "$p$-adic Numbers and their Functions," Second edition, Cambridge Tracts in Mathematics, 76, Cambridge Univ. Press, Cambridge-New York, 1981. |
[35] |
M. van der Put, Algèbres de fonctions continues $p$-adiques. II, (French) Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math., 30 (1968), 412-420 |
[36] |
J. Rivera-Letelier, "Dynamique des Fonctions Rationelles sur des Corps Locaux," Ph.D thesis, Orsay, 2000. |
[37] |
J. Rivera-Letelier, Dynamique des fonctions rationelles sur des corps locaux, Asterisque, 287 (2003), 147-230. |
[38] |
J. Rivera-Letelier, Espace hyperbolique $p$-adique et dynamique des fonctions rationelles, Compos. Math., 138 (2003), 199-231.
doi: 10.1023/A:1026136530383. |
[39] |
S. De Smedt and A. Khrennikov, A $p$-adic behaviour of dynamical systems, Rev. Mat. Complut., 12 (1999), 301-323. |
[40] |
W. H. Schikhof, "Ultrametric Calculus. An Introduction to $p$-adic Analysis," Cambridge Studies in Advanced Mathematics, 4, Cambridge University Press, Cambridge, 1984. |
[41] |
J. H. Silverman, "The Arithmetic of Dynamical Systems," Graduate Texts in Mathematics, 241, Springer, New York, 2007.
doi: 10.1007/978-0-387-69904-2. |
[42] |
F. Vivaldi, The arithmetic of discretized rotations, in "$p$-adic Mathematical Physics" (eds. A. Yu. Khrennikov, Zoran Rakić and I. V. Volovich), AIP Conference Proceedings, 826, American Institute of Physics, Melville, New York, (2006), 162-173.
doi: 10.1063/1.2193120. |
[43] |
F. Vivaldi and I. Vladimirov, Pseudo-randomness of round-off errors in discretized linear maps on the plane, Int. J. of Bifurcations and Chaos Appl. Sci. Engrg., 13 (2003), 3373-3393.
doi: 10.1142/S0218127403008557. |
[44] |
F. Vivaldi, Algebraic and arithmetic dynamics bibliographical database. Available from: http://www.maths.qmul.ac.uk/~fv/database/algdyn.pdf. |
[45] |
E. I. Yurova, Van der Put basis and $p$-adic dynamics, $p$-Adic Numbers, Ultrametric Analysis and Applications, 2 (2010), 175-178.
doi: 10.1134/S207004661002007X. |
[1] |
Frédéric Bernicot, Bertrand Maury, Delphine Salort. A 2-adic approach of the human respiratory tree. Networks and Heterogeneous Media, 2010, 5 (3) : 405-422. doi: 10.3934/nhm.2010.5.405 |
[2] |
Aihua Fan, Shilei Fan, Lingmin Liao, Yuefei Wang. Minimality of p-adic rational maps with good reduction. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3161-3182. doi: 10.3934/dcds.2017135 |
[3] |
Farrukh Mukhamedov, Otabek Khakimov. Chaotic behavior of the P-adic Potts-Bethe mapping. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 231-245. doi: 10.3934/dcds.2018011 |
[4] |
James Kingsbery, Alex Levin, Anatoly Preygel, Cesar E. Silva. Dynamics of the $p$-adic shift and applications. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 209-218. doi: 10.3934/dcds.2011.30.209 |
[5] |
Fuqing Sun, Qin Yue, Xia Li. on the 2-adic complexity of cyclotomic binary sequences of order three. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022049 |
[6] |
Raf Cluckers, Julia Gordon, Immanuel Halupczok. Motivic functions, integrability, and applications to harmonic analysis on $p$-adic groups. Electronic Research Announcements, 2014, 21: 137-152. doi: 10.3934/era.2014.21.137 |
[7] |
Vladimir Edemskiy, Sofia Koltsova. Estimate of 4-adic complexity of unified quaternary sequences of length $ 2p $. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022048 |
[8] |
Sarah Bailey Frick. Limited scope adic transformations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 269-285. doi: 10.3934/dcdss.2009.2.269 |
[9] |
Sangtae Jeong, Chunlan Li. Measure-preservation criteria for a certain class of 1-lipschitz functions on Zp in mahler's expansion. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3787-3804. doi: 10.3934/dcds.2017160 |
[10] |
Ilwoo Cho. Certain $*$-homomorphisms acting on unital $C^{*}$-probability spaces and semicircular elements induced by $p$-adic number fields over primes $p$. Electronic Research Archive, 2020, 28 (2) : 739-776. doi: 10.3934/era.2020038 |
[11] |
Andrew Klapper. The asymptotic behavior of N-adic complexity. Advances in Mathematics of Communications, 2007, 1 (3) : 307-319. doi: 10.3934/amc.2007.1.307 |
[12] |
Bojing Shi. $ W^{1, p} $ estimates for elliptic problems with drift terms in Lipschitz domains. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 537-553. doi: 10.3934/dcds.2021127 |
[13] |
Wacław Marzantowicz, Piotr Maciej Przygodzki. Finding periodic points of a map by use of a k-adic expansion. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 495-514. doi: 10.3934/dcds.1999.5.495 |
[14] |
Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409 |
[15] |
Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757 |
[16] |
Thierry de la Rue. An introduction to joinings in ergodic theory. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 121-142. doi: 10.3934/dcds.2006.15.121 |
[17] |
Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2022, 16 (3) : 503-524. doi: 10.3934/amc.2020122 |
[18] |
Charles Pugh, Michael Shub. Periodic points on the $2$-sphere. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1171-1182. doi: 10.3934/dcds.2014.34.1171 |
[19] |
Earl Berkson. Fourier analysis methods in operator ergodic theory on super-reflexive Banach spaces. Electronic Research Announcements, 2010, 17: 90-103. doi: 10.3934/era.2010.17.90 |
[20] |
Jerrold E. Marsden, Alexey Tret'yakov. Factor analysis of nonlinear mappings: p-regularity theory. Communications on Pure and Applied Analysis, 2003, 2 (4) : 425-445. doi: 10.3934/cpaa.2003.2.425 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]