Citation: |
[1] |
L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. |
[2] |
P. H. Baxendale, Stability and equilibrium properties of stochastic flows of diffeomorphisms, in Diffusion Processes and Related Problems in Analysis, Vol. II, Birkhäuser Boston, Boston, MA, 27 (1992), 3-35. |
[3] |
G. Birkhoff, Lattice Theory, Third edition, American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. |
[4] |
H. Bruin, M. Demers and I. Melbourne, Existence and convergence properties of physical measures for certain dynamical systems with holes, Ergodic Theory Dynam. Systems, 30 (2010), 687-728.doi: 10.1017/S0143385709000200. |
[5] |
M. Demers, P. Wright and L.-S. Young, Escape rates and physically relevant measures for billiards with small holes, Comm. Math. Phys., 294 (2010), 353-388.doi: 10.1007/s00220-009-0941-y. |
[6] |
M. F. Demers, P. Wright and L.-S. Young, Entropy, Lyapunov exponents and escape rates in open systems, Ergodic Theory Dynam. Systems, 32 (2012), 1270-1301.doi: 10.1017/S0143385711000344. |
[7] |
M. F. Demers and L.-S. Young, Escape rates and conditionally invariant measures, Nonlinearity, 19 (2006), 377-397.doi: 10.1088/0951-7715/19/2/008. |
[8] |
C. Gupta, W. Ott and A. Török, Memory loss for time-dependent piecewise expanding systems in higher dimension, Math. Res. Lett., 20 (2013), 141-161.doi: 10.4310/MRL.2013.v20.n1.a12. |
[9] |
H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics, Vol. 24, Cambridge University Press, Cambridge, 1990. |
[10] |
Y. Le Jan, On isotropic Brownian motions, Z. Wahrsch. Verw. Gebiete, 70 (1985), 609-620. |
[11] |
F. Ledrappier and L.-S. Young, Entropy formula for random transformations, Probab. Theory Related Fields, 80 (1988), 217-240.doi: 10.1007/BF00356103. |
[12] |
K. K. Lin, E. Shea-Brown and L.-S. Young, Reliability of coupled oscillators, J. Nonlinear Sci., 19 (2009), 497-545.doi: 10.1007/s00332-009-9042-5. |
[13] |
C. Liverani and V. Maume-Deschamps, Lasota-Yorke maps with holes: conditionally invariant probability measures and invariant probability measures on the survivor set, Ann. Inst. H. Poincaré Probab. Statist., 39 (2003), 385-412.doi: 10.1016/S0246-0203(02)00005-5. |
[14] |
N. Masmoudi and L.-S. Young, Ergodic theory of infinite dimensional systems with applications to dissipative parabolic PDEs, Comm. Math. Phys., 227 (2002), 461-481.doi: 10.1007/s002200200639. |
[15] |
J. C. Mattingly, Ergodicity of $2$D Navier-Stokes equations with random forcing and large viscosity, Comm. Math. Phys., 206 (1999), 273-288.doi: 10.1007/s002200050706. |
[16] |
W. Ott, M. Stenlund and L.-S. Young, Memory loss for time-dependent dynamical systems, Math. Res. Lett., 16 (2009), 463-475.doi: 10.4310/MRL.2009.v16.n3.a7. |
[17] |
M. Stenlund, Non-stationary compositions of Anosov diffeomorphisms, Nonlinearity, 24 (2011), 2991-3018.doi: 10.1088/0951-7715/24/10/016. |
[18] |
M. Stenlund, L.-S. Young and H.-K. Zhang, Dispersing billiards with moving scatterers, Comm. Math. Phys., 322 (2013), 909-955.doi: 10.1007/s00220-013-1746-6. |
[19] |
H. v. d. Bedem and N. Chernov, Expanding maps of an interval with holes, Ergodic Theory Dynam. Systems, 22 (2002), 637-654.doi: 10.1017/S0143385702000329. |