Advanced Search
Article Contents
Article Contents

Shadowing near nonhyperbolic fixed points

Abstract Related Papers Cited by
  • We use Lyapunov type functions to find conditions of finite shadowing in a neighborhood of a nonhyperbolic fixed point of a one-dimensional or two-dimensional homeomorphism or diffeomorphism. A new concept of shadowing in which we control the size of one-step errors is introduced in the case of a nonisolated fixed point.
    Mathematics Subject Classification: Primary: 37C50.


    \begin{equation} \\ \end{equation}
  • [1]

    S. Y. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Mathematics, 1706. Springer-Verlag, Berlin, 1999.


    K. Palmer, Shadowing in Dynamical Systems. Theory and Applications, Mathematics and its Applications, 501. Kluwer Academic Publishers, Dordrecht, 2000.


    S. Y. Pilyugin, Theory of pseudo-orbit shadowing in dynamical systems, Differential Equations, 47 (2011), 1929-1938.doi: 10.1134/S0012266111130040.


    S. M. Hammel, J. A. Yorke and C. Grebogi, Numerical orbits of chaotic dynamical processes represent true orbits, Bull. Amer. Math. Soc., 19 (1988), 465-469.doi: 10.1090/S0273-0979-1988-15701-1.


    J. Kennedy, James A. Yorke, Shadowing in higher dimensions, Progress in Nonlinear Differential Equations and Their Applications Volume, 75 (2008), 241-246.doi: 10.1007/978-3-7643-8482-1_19.


    J. Lewowicz, Lyapunov functions and topological stability, J. Differential Equations, 38 (1980), 192-209.doi: 10.1016/0022-0396(80)90004-2.


    A. A. Petrov and S. Y. Pilyugin, Lyapunov functions, shadowing, and topological stability, Topol. Methods Nonlin. Anal. (2014).


    S. Tikhomirov, Holder Shadowing on Finite Intervals, arXiv:1106.4053v2.

  • 加载中

Article Metrics

HTML views() PDF downloads(77) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint