September  2014, 34(9): 3773-3788. doi: 10.3934/dcds.2014.34.3773

Modulation of uniform motion in diatomic Frenkel-Kontorova model

1. 

Department of Mathematics, Soochow University, Suzhou, 215006, China

Received  June 2013 Revised  January 2014 Published  March 2014

We study modulated structures of uniform motion in the diatomic Frenkel-Kontorova (FK) model with alternating light and heavy particles. By applying topological method for the damped and driven case and variational approach for the conservative case, we demonstrate for the diatomic FK model the existence of two different periodic modulation functions corresponding respectively to light and heavy particles.
Citation: Wen-Xin Qin. Modulation of uniform motion in diatomic Frenkel-Kontorova model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3773-3788. doi: 10.3934/dcds.2014.34.3773
References:
[1]

D. G. Aronson, M. Golubitsky and J. Mallet-Paret, Ponies on a merry-go-round in large arrays of Josephson junctions,, Nonlinearity, 4 (1991), 903.  doi: 10.1088/0951-7715/4/3/014.  Google Scholar

[2]

D. G. Aronson and Y. S. Huang, Limit and uniqueness of discrete rotating waves in large arrays of Josephson junctions,, Nonlinearity, 7 (1994), 777.  doi: 10.1088/0951-7715/7/3/005.  Google Scholar

[3]

D. G. Aronson and Y. S. Huang, Single waveform solutions for linear arrays of Josephson junctions,, Physica D, 101 (1997), 157.  doi: 10.1016/S0167-2789(96)00221-7.  Google Scholar

[4]

O. M. Braun and Y. S. Kivshar, The Frenkel-Kontorova Model, Concepts, Methods, and Applications,, Springer-Verlag, (2004).   Google Scholar

[5]

C. Baesens and R. S. MacKay, A novel preserved partial order for cooperative networks of units with overdamped second order dynamics, and application to tilted Frenkel-Kontorova chains,, Nonlinearity, 17 (2004), 567.  doi: 10.1088/0951-7715/17/2/012.  Google Scholar

[6]

M. Fečkan and V. Rothos, Travelling waves in Hamiltonian systems on 2D lattices with nearest neighborhood interactions,, Nonlinearity, 20 (2007), 319.  doi: 10.1088/0951-7715/20/2/005.  Google Scholar

[7]

M. Fečkan, Bifurcation and Chaos in Discontinuous and Continuous Systems,, HEP-Springer, (2011).  doi: 10.1007/978-3-642-18269-3.  Google Scholar

[8]

A. -M. Filip and S. Venakides, Existence and modulation of traveling waves in particle chains,, Comm. Pure Appl. Math., 52 (1999), 693.  doi: 10.1002/(SICI)1097-0312(199906)52:6<693::AID-CPA2>3.0.CO;2-9.  Google Scholar

[9]

N. Forcadel, C. Imbert and R. Monneau, Homogenization of accelerated Frenkel-Kontorova models with $n$ types of particles,, Trans. Amer. Math. Soc., 364 (2012), 6187.  doi: 10.1090/S0002-9947-2012-05650-9.  Google Scholar

[10]

G. Friesecke and J. Wattis, Existence theorem for solitary waves on lattices,, Commun. Math. Phys., 161 (1994), 391.  doi: 10.1007/BF02099784.  Google Scholar

[11]

A. Georgieva, T. Kriecherbauer and S. Venakides, Wave propagation and resonance in a one-dimensional nonlinear discrete periodic medium,, SIAM J. Appl. Math., 60 (2000), 272.  doi: 10.1137/S0036139998340315.  Google Scholar

[12]

A. Georgieva, T. Kriecherbauer and S. Venakides, 1:2 resonance mediated second harmonic generation in a 1-D nonlinear discrete periodic medium,, SIAM J. Appl. Math., 61 (2001), 1802.  doi: 10.1137/S0036139999365341.  Google Scholar

[13]

A. V. Gorbach and M. Johansson, Discrete gap breathers in a diatomic Klein-Gordon chain: Stability and mobility,, Phys. Rev. E, 67 (2003).  doi: 10.1103/PhysRevE.67.066608.  Google Scholar

[14]

M. Herrmann, Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains,, Proc. Roy. Soc. Edinburgh, 140 (2010), 753.  doi: 10.1017/S0308210509000146.  Google Scholar

[15]

G. Katriel, Existence of travelling waves in discrete sine-Gordon rings,, SIAM J. Math. Anal., 36 (2005), 1434.  doi: 10.1137/S0036141004440174.  Google Scholar

[16]

Y. Kivshar and N. Flytzanis, Gap solitons in diatomic lattices,, Phys. Rev. A, 46 (1992), 7972.  doi: 10.1103/PhysRevA.46.7972.  Google Scholar

[17]

R. Livi, M. Spicci and R. S. MacKay, Breathers on a diatomic FPU chain,, Nonlinearity, 10 (1997), 1421.  doi: 10.1088/0951-7715/10/6/003.  Google Scholar

[18]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, Springer-Verlag, (1989).   Google Scholar

[19]

R. Mirollo and N. Rosen, Existence, uniqueness, and nonuniqueness of single-wave-form solutions to Josephson junction systems,, SIAM J. Appl. Math., 60 (2000), 1471.  doi: 10.1137/S003613999834385X.  Google Scholar

[20]

A. Pankov, Traveling Waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices,, Imperial College Press, (2005).  doi: 10.1142/9781860947216.  Google Scholar

[21]

A. Pankov and V. Rothos, Traveling waves in Fermi-Pasta-Ulam lattices with saturable nonlinearities,, Discrete and Continuous Dynamical Systems, 30 (2011), 835.  doi: 10.3934/dcds.2011.30.835.  Google Scholar

[22]

M. Peyrard, St. Pnevmatikos and N. Flytzanis, Dynamics of two-component solitary waves in hydrogen-bonded chains,, Phys. Rev. A, 36 (1987), 903.  doi: 10.1103/PhysRevA.36.903.  Google Scholar

[23]

W. -X. Qin, Uniform sliding states in the undamped Frenkel-Kontorova model,, J. Diff. Equa., 249 (2010), 1764.  doi: 10.1016/j.jde.2010.07.028.  Google Scholar

[24]

W. -X. Qin, Existence and modulation of uniform sliding states in driven and overdamped particle chains,, Commun. Math. Phys., 311 (2012), 513.  doi: 10.1007/s00220-011-1385-8.  Google Scholar

[25]

W. -X. Qin, Existence of dynamical hull functions with two variables for the ac-driven Frenkel-Kontorova model,, J. Diff. Equa., 255 (2013), 3472.  doi: 10.1016/j.jde.2013.07.050.  Google Scholar

[26]

P. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Funct. Anal., 7 (1971), 487.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[27]

P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,, CBMS Reg. Conf. Vol. 65, (1986).   Google Scholar

[28]

H. Schwetlick and J. Zimmer, Solitary waves for nonconvex FPU lattices,, J. Nonlinear Sci., 17 (2007), 1.  doi: 10.1007/s00332-005-0735-0.  Google Scholar

[29]

D. Smets and M. Willem, Solitary waves with prescribed speed on infinite lattices,, J. Funct. Anal., 149 (1997), 266.  doi: 10.1006/jfan.1996.3121.  Google Scholar

[30]

T. Strunz and F.-J. Elmer, Driven Frenkel-Kontorova model: I. Uniform sliding states and dynamical domains of different particle densities,, Phy. Rev. E, 58 (1998), 1601.  doi: 10.1103/PhysRevE.58.1601.  Google Scholar

[31]

A. Vainchtein and P. G. Kevrekidis, Dynamics of phase transitions in a piecewise linear diatomic chain,, J. Nonlinear Sci., 22 (2012), 107.  doi: 10.1007/s00332-011-9110-5.  Google Scholar

[32]

J. A. D. Wattis, Solitary waves in a diatomic lattice: Analytic approximations for a wide range of speeds by quasi-continuum methods,, Phys. Lett. A, 284 (2001), 16.  doi: 10.1016/S0375-9601(01)00277-8.  Google Scholar

[33]

M. Willem, Minimax Theorems,, Birkhäuser, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[34]

A. Xu, G. Wang, S. Chen and B. Hu, Generalized Frenkel-Kontorova model: A diatomic chain in a sinusoidal potential,, Phys. Rev. B, 58 (1998), 721.  doi: 10.1103/PhysRevB.58.721.  Google Scholar

show all references

References:
[1]

D. G. Aronson, M. Golubitsky and J. Mallet-Paret, Ponies on a merry-go-round in large arrays of Josephson junctions,, Nonlinearity, 4 (1991), 903.  doi: 10.1088/0951-7715/4/3/014.  Google Scholar

[2]

D. G. Aronson and Y. S. Huang, Limit and uniqueness of discrete rotating waves in large arrays of Josephson junctions,, Nonlinearity, 7 (1994), 777.  doi: 10.1088/0951-7715/7/3/005.  Google Scholar

[3]

D. G. Aronson and Y. S. Huang, Single waveform solutions for linear arrays of Josephson junctions,, Physica D, 101 (1997), 157.  doi: 10.1016/S0167-2789(96)00221-7.  Google Scholar

[4]

O. M. Braun and Y. S. Kivshar, The Frenkel-Kontorova Model, Concepts, Methods, and Applications,, Springer-Verlag, (2004).   Google Scholar

[5]

C. Baesens and R. S. MacKay, A novel preserved partial order for cooperative networks of units with overdamped second order dynamics, and application to tilted Frenkel-Kontorova chains,, Nonlinearity, 17 (2004), 567.  doi: 10.1088/0951-7715/17/2/012.  Google Scholar

[6]

M. Fečkan and V. Rothos, Travelling waves in Hamiltonian systems on 2D lattices with nearest neighborhood interactions,, Nonlinearity, 20 (2007), 319.  doi: 10.1088/0951-7715/20/2/005.  Google Scholar

[7]

M. Fečkan, Bifurcation and Chaos in Discontinuous and Continuous Systems,, HEP-Springer, (2011).  doi: 10.1007/978-3-642-18269-3.  Google Scholar

[8]

A. -M. Filip and S. Venakides, Existence and modulation of traveling waves in particle chains,, Comm. Pure Appl. Math., 52 (1999), 693.  doi: 10.1002/(SICI)1097-0312(199906)52:6<693::AID-CPA2>3.0.CO;2-9.  Google Scholar

[9]

N. Forcadel, C. Imbert and R. Monneau, Homogenization of accelerated Frenkel-Kontorova models with $n$ types of particles,, Trans. Amer. Math. Soc., 364 (2012), 6187.  doi: 10.1090/S0002-9947-2012-05650-9.  Google Scholar

[10]

G. Friesecke and J. Wattis, Existence theorem for solitary waves on lattices,, Commun. Math. Phys., 161 (1994), 391.  doi: 10.1007/BF02099784.  Google Scholar

[11]

A. Georgieva, T. Kriecherbauer and S. Venakides, Wave propagation and resonance in a one-dimensional nonlinear discrete periodic medium,, SIAM J. Appl. Math., 60 (2000), 272.  doi: 10.1137/S0036139998340315.  Google Scholar

[12]

A. Georgieva, T. Kriecherbauer and S. Venakides, 1:2 resonance mediated second harmonic generation in a 1-D nonlinear discrete periodic medium,, SIAM J. Appl. Math., 61 (2001), 1802.  doi: 10.1137/S0036139999365341.  Google Scholar

[13]

A. V. Gorbach and M. Johansson, Discrete gap breathers in a diatomic Klein-Gordon chain: Stability and mobility,, Phys. Rev. E, 67 (2003).  doi: 10.1103/PhysRevE.67.066608.  Google Scholar

[14]

M. Herrmann, Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains,, Proc. Roy. Soc. Edinburgh, 140 (2010), 753.  doi: 10.1017/S0308210509000146.  Google Scholar

[15]

G. Katriel, Existence of travelling waves in discrete sine-Gordon rings,, SIAM J. Math. Anal., 36 (2005), 1434.  doi: 10.1137/S0036141004440174.  Google Scholar

[16]

Y. Kivshar and N. Flytzanis, Gap solitons in diatomic lattices,, Phys. Rev. A, 46 (1992), 7972.  doi: 10.1103/PhysRevA.46.7972.  Google Scholar

[17]

R. Livi, M. Spicci and R. S. MacKay, Breathers on a diatomic FPU chain,, Nonlinearity, 10 (1997), 1421.  doi: 10.1088/0951-7715/10/6/003.  Google Scholar

[18]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, Springer-Verlag, (1989).   Google Scholar

[19]

R. Mirollo and N. Rosen, Existence, uniqueness, and nonuniqueness of single-wave-form solutions to Josephson junction systems,, SIAM J. Appl. Math., 60 (2000), 1471.  doi: 10.1137/S003613999834385X.  Google Scholar

[20]

A. Pankov, Traveling Waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices,, Imperial College Press, (2005).  doi: 10.1142/9781860947216.  Google Scholar

[21]

A. Pankov and V. Rothos, Traveling waves in Fermi-Pasta-Ulam lattices with saturable nonlinearities,, Discrete and Continuous Dynamical Systems, 30 (2011), 835.  doi: 10.3934/dcds.2011.30.835.  Google Scholar

[22]

M. Peyrard, St. Pnevmatikos and N. Flytzanis, Dynamics of two-component solitary waves in hydrogen-bonded chains,, Phys. Rev. A, 36 (1987), 903.  doi: 10.1103/PhysRevA.36.903.  Google Scholar

[23]

W. -X. Qin, Uniform sliding states in the undamped Frenkel-Kontorova model,, J. Diff. Equa., 249 (2010), 1764.  doi: 10.1016/j.jde.2010.07.028.  Google Scholar

[24]

W. -X. Qin, Existence and modulation of uniform sliding states in driven and overdamped particle chains,, Commun. Math. Phys., 311 (2012), 513.  doi: 10.1007/s00220-011-1385-8.  Google Scholar

[25]

W. -X. Qin, Existence of dynamical hull functions with two variables for the ac-driven Frenkel-Kontorova model,, J. Diff. Equa., 255 (2013), 3472.  doi: 10.1016/j.jde.2013.07.050.  Google Scholar

[26]

P. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Funct. Anal., 7 (1971), 487.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[27]

P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,, CBMS Reg. Conf. Vol. 65, (1986).   Google Scholar

[28]

H. Schwetlick and J. Zimmer, Solitary waves for nonconvex FPU lattices,, J. Nonlinear Sci., 17 (2007), 1.  doi: 10.1007/s00332-005-0735-0.  Google Scholar

[29]

D. Smets and M. Willem, Solitary waves with prescribed speed on infinite lattices,, J. Funct. Anal., 149 (1997), 266.  doi: 10.1006/jfan.1996.3121.  Google Scholar

[30]

T. Strunz and F.-J. Elmer, Driven Frenkel-Kontorova model: I. Uniform sliding states and dynamical domains of different particle densities,, Phy. Rev. E, 58 (1998), 1601.  doi: 10.1103/PhysRevE.58.1601.  Google Scholar

[31]

A. Vainchtein and P. G. Kevrekidis, Dynamics of phase transitions in a piecewise linear diatomic chain,, J. Nonlinear Sci., 22 (2012), 107.  doi: 10.1007/s00332-011-9110-5.  Google Scholar

[32]

J. A. D. Wattis, Solitary waves in a diatomic lattice: Analytic approximations for a wide range of speeds by quasi-continuum methods,, Phys. Lett. A, 284 (2001), 16.  doi: 10.1016/S0375-9601(01)00277-8.  Google Scholar

[33]

M. Willem, Minimax Theorems,, Birkhäuser, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[34]

A. Xu, G. Wang, S. Chen and B. Hu, Generalized Frenkel-Kontorova model: A diatomic chain in a sinusoidal potential,, Phys. Rev. B, 58 (1998), 721.  doi: 10.1103/PhysRevB.58.721.  Google Scholar

[1]

Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations & Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043

[2]

Shu Zhang, Yuan Yuan. The Filippov equilibrium and sliding motion in an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1189-1206. doi: 10.3934/dcdsb.2017058

[3]

Anne Nouri, Christian Schmeiser. Aggregated steady states of a kinetic model for chemotaxis. Kinetic & Related Models, 2017, 10 (1) : 313-327. doi: 10.3934/krm.2017013

[4]

Johannes Giannoulis. Transport and generation of macroscopically modulated waves in diatomic chains. Conference Publications, 2011, 2011 (Special) : 485-494. doi: 10.3934/proc.2011.2011.485

[5]

Claude Carlet, Yousuf Alsalami. A new construction of differentially 4-uniform $(n,n-1)$-functions. Advances in Mathematics of Communications, 2015, 9 (4) : 541-565. doi: 10.3934/amc.2015.9.541

[6]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[7]

Seung-Yeal Ha, Jinyeong Park, Sang Woo Ryoo. Emergence of phase-locked states for the Winfree model in a large coupling regime. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3417-3436. doi: 10.3934/dcds.2015.35.3417

[8]

Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026

[9]

Xinfu Chen, Yuanwei Qi, Mingxin Wang. Steady states of a strongly coupled prey-predator model. Conference Publications, 2005, 2005 (Special) : 173-180. doi: 10.3934/proc.2005.2005.173

[10]

Yunfeng Jia, Yi Li, Jianhua Wu. Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4785-4813. doi: 10.3934/dcds.2017206

[11]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[12]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[13]

Alan D. Rendall. Multiple steady states in a mathematical model for interactions between T cells and macrophages. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 769-782. doi: 10.3934/dcdsb.2013.18.769

[14]

Yongli Cai, Yun Kang, Weiming Wang. Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1071-1089. doi: 10.3934/mbe.2017056

[15]

Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849

[16]

Xiaolin Jia, Caidi Zhao, Juan Cao. Uniform attractor of the non-autonomous discrete Selkov model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 229-248. doi: 10.3934/dcds.2014.34.229

[17]

Pierluigi Colli, Antonio Segatti. Uniform attractors for a phase transition model coupling momentum balance and phase dynamics. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 909-932. doi: 10.3934/dcds.2008.22.909

[18]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[19]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[20]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]