Citation: |
[1] |
A. F. Filippov, Differential equations with discontinuous right-hand side, Mat. Sb., 51 (1960), 99-128. |
[2] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publishers., Norwell, 1988. |
[3] |
M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems. Theory and Applications. Applied Mathematical Sciences, 163. Springer-Verlag London, Ltd., London, 2008. |
[4] |
R. I. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-smooth Mechanical Systems, volume 18 of Lecture Notes in Applied and Computational Mathematics. Springer-Verlag, Berlin, 2004. |
[5] |
B. Blazejczyk-Okolewska, K. Czolczynski, T. Kapitaniak and J. Wojewoda, Chaotic Mechanics in Systems with Impacts and Friction, World Scientific, Singapore, 1999.doi: 10.1142/9789812798565. |
[6] |
M. Wiercigroch and B. De Kraker, editors, Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities, Singapore, 2000. World Scientific.doi: 10.1142/9789812796301. |
[7] |
M. Oestreich, N. Hinrichs and K. Popp, Bifurcation and stability analysis for a non-smooth friction oscillator, Arch. Appl. Mech., 66 (1996), 301-314.doi: 10.1007/BF00795247. |
[8] |
B. Feeny and F. C. Moon, Chaos in a forced dry-friction oscillator: Experiments and numerical modelling, J. Sound Vib., 170 (1994), 303-323.doi: 10.1006/jsvi.1994.1065. |
[9] |
M. Johansson, Piecewise Linear Control Systems, volume 284 of Lecture Notes in Control and Information Sciences. Springer-Verlag, New York, 2003. |
[10] |
K. H. Johansson, A. Rantzer and K. J. Åström, Fast switches in relay feedback systems, Automatica, 35 (1999), 539-552.doi: 10.1016/S0005-1098(98)00160-5. |
[11] |
M. di Bernardo, K.H. Johansson and F. Vasca, Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations, Int J. Bifurcation Chaos, 11 (2001), 1121-1140.doi: 10.1142/S0218127401002584. |
[12] |
F. Dercole, A. Gragnani and S. Rinaldi, Bifurcation analysis of piecewise smooth ecological models, Theor. Popul. Biol., 72 (2007), 197-213.doi: 10.1016/j.tpb.2007.06.003. |
[13] |
F. Dercole, R. Ferrière, A. Gragnani and S. Rinaldi, Coevolution of slow-fast populations: Evolutionary sliding, evolutionary pseudo-equilibria and complex Red Queen dynamics, Proc. R. Soc. B, 273 (2006), 983-990.doi: 10.1098/rspb.2005.3398. |
[14] |
J. A. Amador, G. Olivar and F. Angulo, Smooth and Filippov models of sustainable development: Bifurcations and numerical computations, Differ. Equ. Dyn. Syst., 21 (2013), 173-184.doi: 10.1007/s12591-012-0138-2. |
[15] |
S. Tang, J. Liang, Y. Xiao and R. A. Cheke, Sliding bifurcations of Filippov two stage pest control models with economic thresholds, SIAM J. Appl. Math., 72 (2012), 1061-1080.doi: 10.1137/110847020. |
[16] |
K. Deimling, Multivalued Differential Equations, W. de Gruyter, New York, 1992.doi: 10.1515/9783110874228. |
[17] |
G. V. Smirnov, Introduction to the Theory of Differential Inclusions, American Mathematical Society, Providence, RI, 2002. |
[18] |
J. Cortés, Discontinuous dynamical systems. A tutorial on solutions, nonsmooth analysis, and stability, IEEE Contr. Sys. Magazine, 28 (2008), 36-73.doi: 10.1109/MCS.2008.919306. |
[19] |
M. A. Teixeira, Stability conditions for discontinuous vector fields, J. Differential Equations, 88 (1990), 15-29.doi: 10.1016/0022-0396(90)90106-Y. |
[20] |
M. A. Teixeira, Generic bifurcation of sliding vector fields, J. Math. Anal. Appl., 176 (1993), 436-457.doi: 10.1006/jmaa.1993.1226. |
[21] |
Y. A. Kuznetsov, S. Rinaldi and A. Gragnani, One-parameter bifurcations in planar Filippov systems, Int. J. Bifurcation Chaos, 13 (2003), 2157-2188.doi: 10.1142/S0218127403007874. |
[22] |
M. Guardia, T. M. Seara and M. A. Teixeira, Generic bifurcations of low codimension of planar Filippov systems, J. Differential Equations, 250 (2011), 1967-2023.doi: 10.1016/j.jde.2010.11.016. |
[23] |
M. R. Jeffrey and A. Colombo, The two-fold singularity of discontinuous vector fields, SIAM J. Appl. Dyn. Sys., 8 (2009), 624-640.doi: 10.1137/08073113X. |
[24] |
A. Colombo and M. R. Jeffrey, Nondeterministic chaos, and the two-fold singularity in piecewise smooth flows, SIAM J. Appl. Dyn. Sys., 10 (2011), 423-451.doi: 10.1137/100801846. |
[25] |
S. Fernández-García, D. A. García, G. O. Tost, M. di Bernardo and M. R. Jeffrey, Structural stability of the two-fold singularity, SIAM J. Appl. Dyn. Syst., 11 (2012), 1215-1230.doi: 10.1137/120869134. |
[26] |
A. Colombo and M. R. Jeffrey, The two-fold singularity of non-smooth flows: Leading order dynamics in $n$-dimensions, Phys. D, 263 (2013), 1-10.doi: 10.1016/j.physd.2013.07.015. |
[27] |
M. di Bernardo, A. Colombo and E. Fossas, Two-fold singularity in nonsmooth electrical systems, In IEEE International Symposium on Circuits and Systems., pages 2713-2716, 2011. |
[28] |
M. Desroches and M. R. Jeffrey, Canards and curvature: Nonsmooth approximation by pinching, Nonlinearity, 24 (2011), 1655-1682.doi: 10.1088/0951-7715/24/5/014. |
[29] |
M. Desroches and M. R. Jeffrey, Pinching of canards and folded nodes: Nonsmooth approximation of slow-fast dynamics, Unpublished, 2012. |
[30] |
Y. Z. Tsypkin, Relay Control Systems, Cambridge University Press, New York, 1984. |
[31] |
F. Flandoli, Random Perturbations of PDEs and Fluid Dynamic Models, volume 2015 of Lecture Notes in Mathematics. Springer, New York, 2011.doi: 10.1007/978-3-642-18231-0. |
[32] |
N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Relat. Fields, 131 (2005), 154-196.doi: 10.1007/s00440-004-0361-z. |
[33] |
A. M. Davie, Uniqueness of solutions of stochastic differential equations, Int. Math. Res. Not., IMRN 2007, no. 24, Art. ID rnm124, 26 pp.doi: 10.1093/imrn/rnm124. |
[34] |
F. Flandoli and J. A. Langa, Markov attractors: A probabilistic approach to multivalued flows, Stoch. Dyn., 8 (2008), 59-75.doi: 10.1142/S0219493708002202. |
[35] |
V. S. Borkar and K. Suresh Kumar, A new Markov selection procedure for degenerate diffusions, J. Theor. Probab., 23 (2010), 729-747.doi: 10.1007/s10959-009-0242-6. |
[36] |
F. Flandoli, Remarks on uniqueness and strong solutions to deterministic and stochastic differential equations, Metrika, 69 (2009), 101-123.doi: 10.1007/s00184-008-0210-7. |
[37] |
S. Attanasio and F. Flandoli, Zero-noise solutions of linear transport equations without uniqueness: An example, C. R. Acad. Sci. Paris, Ser. I, 347 (2009), 753-756.doi: 10.1016/j.crma.2009.04.027. |
[38] |
S. S. Sastry, The effects of small noise on implicitly defined nonlinear dynamical systems, IEEE Trans. Circuits Syst., 30 (1983), 651-663.doi: 10.1109/TCS.1983.1085404. |
[39] |
A. Yu. Veretennikov, Approximation of ordinary differential equations by stochastic differential equations, Mat. Zametki, 33 (1983), 929-932. |
[40] |
R. Bafico and P. Baldi, Small random perturbations of Peano phenomena, Stochastics, 6 (1981/82), 279-292. doi: 10.1080/17442508208833208. |
[41] |
Y. Kifer, The exit problem for small random perturbations of dynamical systems with a hyperbolic fixed point, Israel J. Math., 40 (1981), 74-96.doi: 10.1007/BF02761819. |
[42] |
Y. Bakhtin, Noisy heteroclinic networks, Probab. Theory Relat. Fields, 150 (2011), 1-42.doi: 10.1007/s00440-010-0264-0. |
[43] |
D. Armbruster, E. Stone and V. Kirk, Noisy heteroclinic networks, Chaos, 13 (2003), 71-86.doi: 10.1063/1.1539951. |
[44] |
M. di Bernardo, K. H. Johansson, U. Jönsson and F. Vasca, On the robustness of periodic solutions in relay feedback systems, In 15th Triennial World Congress, Barcelona, Spain, 2002. |
[45] |
J. M. Gonçalves, A. Megretski and M. A. Dahleh, Global stability of relay feedback systems, IEEE Trans. Automat. Contr., 46 (2001), 550-562.doi: 10.1109/9.917657. |
[46] |
T. Kalmár-Nagy, P. Wahi and A Halder, Dynamics of a hysteretic relay oscillator with periodic forcing, SIAM J. Appl. Dyn. Syst., 10 (2011), 403-422.doi: 10.1137/100784606. |
[47] |
S. Varigonda and T. T. Georgiou, Dynamics of relay relaxation oscillators, IEEE Trans. Automat. Contr., 46 (2001), 65-77.doi: 10.1109/9.898696. |
[48] |
J. Sieber, Dynamics of delayed relay systems, Nonlinearity, 19 (2006), 2489-2527.doi: 10.1088/0951-7715/19/11/001. |
[49] |
J. Sieber, P. Kowalczyk, S. J. Hogan and M. di Bernardo, Dynamics of symmetric dynamical systems with delayed switching, J. Vib. Control, 16 (2010), 1111-1140.doi: 10.1177/1077546309341124. |
[50] |
A. Colombo, M. di Bernardo, S. J. Hogan and P. Kowalczyk, Complex dynamics in a hysteretic relay feedback system with delay, J. Nonlinear Sci., 17 (2007), 85-108.doi: 10.1007/s00332-005-0745-y. |
[51] |
Yu. V. Prokhorov and A. N. Shiryaev, editors, Probability Theory III: Stochastic Calculus, Springer, New York, 1998. |
[52] |
D. Stroock and S. R. S Varadhan, Diffusion processes with continuous coefficients. I, Comm. Pure Appl. Math., 22 (1969), 345-400.doi: 10.1002/cpa.3160220304. |
[53] |
M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer, New York, 2012.doi: 10.1007/978-3-642-25847-3. |
[54] |
C. W. Gardiner, Stochastic Methods. A Handbook for the Natural and Social Sciences, Springer, New York, 2009. |
[55] |
L. Zhang, Random perturbation of some multi-dimensional non-Lipschitz ordinary differential equations, Unpublished, 2013. |
[56] |
R. Buckdahn, Y. Ouknine and M. Quincampoix, On limiting values of stochastic differential equations with small noise intensity tending to zero, Bull. Sci. Math., 133 (2009), 229-237.doi: 10.1016/j.bulsci.2008.12.005. |
[57] |
D. J. W. Simpson and R. Kuske, The positive occupation time of Brownian motion with two-valued drift and asymptotic dynamics of sliding motion with noise, To appear: Stoch. Dyn., 2014.doi: 10.1142/S0219493714500105. |
[58] |
I. Karatzas and S. E. Shreve, Trivariate density of Brownian motion, its local and occupation times, with application to stochastic control, Ann. Prob., 12 (1984), 819-828.doi: 10.1214/aop/1176993230. |
[59] |
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York, 1991.doi: 10.1007/978-1-4612-0949-2. |
[60] |
C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, International Series in Pure and Applied Mathematics. McGraw-Hill, New York, 1978. |
[61] |
M. Gradinaru, S. Herrmann and B. Roynette, A singular large deviations phenomenon, Ann. Inst. Henri Poincaré, 37 (2001), 555-580.doi: 10.1016/S0246-0203(01)01075-5. |
[62] |
Z. Schuss, Theory and Applications of Stochastic Processes, Springer, New York, 2010.doi: 10.1007/978-1-4419-1605-1. |
[63] |
B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer, New York, 2003.doi: 10.1007/978-3-642-14394-6. |
[64] |
C. Knessl, Exact and asymptotic solutions to a PDE that arises in time-dependent queues, Adv. Appl. Prob., 32 (2000), 256-283.doi: 10.1239/aap/1013540033. |
[65] |
O. Vallée and M. Soares, Airy Functions and Applications to Physics, Second edition. Imperial College Press, London, 2010. |
[66] |
M. J. Ablowitz and A. S. Fokas, Complex Variables. Introduction and Applications, Cambridge University Press, New York, 2003.doi: 10.1017/CBO9780511791246. |