September  2014, 34(9): 3831-3846. doi: 10.3934/dcds.2014.34.3831

Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables

1. 

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan

Received  July 2013 Revised  December 2013 Published  March 2014

In this paper, we give a small data blow-up result for the one-dimensional semilinear wave equation with damping depending on time and space variables. We show that if the damping term can be regarded as perturbation, that is, non-effective damping in a certain sense, then the solution blows up in finite time for any power of nonlinearity. This gives an affirmative answer for the conjecture that the critical exponent agrees with that of the wave equation when the damping is non-effective in one space dimension.
Citation: Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831
References:
[1]

M. D'Abbicco, The threshold of effective damping for semilinear wave equations,, Math. Methods Appl. Sci. (to appear)., ().   Google Scholar

[2]

M. D'Abbicco and S. Lucente, A modified test function method for damped wave equations,, Adv. Nonlinear Stud. 13 (2013), 13 (2013), 867.   Google Scholar

[3]

M. D'Abbicco, S. Lucente and M. Reissig, Semi-Linear wave equations with effective damping,, Chin. Ann. Math., 34 (2013), 345.  doi: 10.1007/s11401-013-0773-0.  Google Scholar

[4]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109.   Google Scholar

[5]

N. Hayashi, E. I. Kaikina and P. I. Naumkin, Damped wave equation with super critical nonlinearities,, Differential Integral Equations, 17 (2004), 637.   Google Scholar

[6]

T. Hosono and T. Ogawa, Large time behavior and $L^p$-$L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations,, J. Differential Equations, 203 (2004), 82.  doi: 10.1016/j.jde.2004.03.034.  Google Scholar

[7]

M. Ikeda and Y. Wakasugi, A note on the lifespan of solutions to the semilinear damped wave equation,, Proc. Amer. Math. Soc. (to appear)., ().   Google Scholar

[8]

R. Ikehata and K. Tanizawa, Global existence of solutions for semilinear damped wave equations in $\mathbfR^N$ with noncompactly supported initial data,, Nonliear Anal., 61 (2005), 1189.  doi: 10.1016/j.na.2005.01.097.  Google Scholar

[9]

R. Ikehata, G. Todorova and B. Yordanov, Critical exponent for semilinear wave equations with space-dependent potential,, Funkcialaj Ekvacioj, 52 (2009), 411.  doi: 10.1619/fesi.52.411.  Google Scholar

[10]

R. Ikehata, G. Todorova and B. Yordanov, Optimal decay rate of the energy for wave equations with critical potential,, J. Math. Soc. Japan, 65 (2013), 183.  doi: 10.2969/jmsj/06510183.  Google Scholar

[11]

T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations,, Comm. Pure Appl. Math., 33 (1980), 501.  doi: 10.1002/cpa.3160330403.  Google Scholar

[12]

J. S. Kenigson and J. J. Kenigson, Energy decay estimates for the dissipative wave equation with space-time dependent potential,, Math. Meth. Appl. Sci., 34 (2011), 48.  doi: 10.1002/mma.1330.  Google Scholar

[13]

M. Khader, Global existence for the dissipative wave equations with space-time dependent potential,, Nonlinear Anal., 81 (2013), 87.  doi: 10.1016/j.na.2012.10.015.  Google Scholar

[14]

H. Kuiper, Life span of nonnegative solutions to certain quasilinear parabolic Cauchy problems,, Electron. J. Differential Equations, 2003 (2003), 1.   Google Scholar

[15]

J. Lin, K. Nishihara and J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping,, Discrete Contin. Dyn. Syst., 32 (2012), 4307.  doi: 10.3934/dcds.2012.32.4307.  Google Scholar

[16]

P. Marcati and K. Nishihara, The $L^p-L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media,, J. Differential Equations, 191 (2003), 445.  doi: 10.1016/S0022-0396(03)00026-3.  Google Scholar

[17]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. Res. Inst. Math. Sci., 12 (): 169.  doi: 10.2977/prims/1195190962.  Google Scholar

[18]

K. Mochizuki, Scattering theory for wave equations with dissipative terms,, Publ. Res. Inst. Math. Sci., 12 (1976), 383.  doi: 10.2977/prims/1195190721.  Google Scholar

[19]

T. Narazaki, $L^p$-$L^q$ estimates for damped wave equations and their applications to semi-linear problem,, J. Math. Soc. Japan, 56 (2004), 585.  doi: 10.2969/jmsj/1191418647.  Google Scholar

[20]

K. Nishihara, $L^p-L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application,, Math. Z., 244 (2003), 631.   Google Scholar

[21]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping,, J. Differential Equations, 174 (2001), 464.  doi: 10.1006/jdeq.2000.3933.  Google Scholar

[22]

G. Todorova and B. Yordanov, Weighted $L^2$-estimates for dissipative wave equations with variable coefficients,, J. Differential Equations, 246 (2009), 4497.  doi: 10.1016/j.jde.2009.03.020.  Google Scholar

[23]

Y. Wakasugi, Small data global existence for the semilinear wave equation with space-time dependent damping,, J. Math. Anal. Appl., 393 (2012), 66.  doi: 10.1016/j.jmaa.2012.03.035.  Google Scholar

[24]

Y. Wakasugi, Critical exponent for the semilinear wave equation with scale invariant damping,, Trends in Mathematics, (2014), 375.  doi: 10.1007/978-3-319-02550-6_19.  Google Scholar

[25]

J. Wirth, Solution representations for a wave equation with weak dissipation,, Math. Meth. Appl. Sci., 27 (2004), 101.  doi: 10.1002/mma.446.  Google Scholar

[26]

J. Wirth, Wave equations with time-dependent dissipation I. Non-effective dissipation,, J. Differential Equations, 222 (2006), 487.  doi: 10.1016/j.jde.2005.07.019.  Google Scholar

[27]

J. Wirth, Wave equations with time-dependent dissipation II. Effective dissipation,, J. Differential Equations, 232 (2007), 74.  doi: 10.1016/j.jde.2006.06.004.  Google Scholar

[28]

H. Yang and A. Milani, On the diffusion phenomenon of quasilinear hyperbolic waves,, Bull. Sci. Math., 124 (2000), 415.  doi: 10.1016/S0007-4497(00)00141-X.  Google Scholar

[29]

Qi S. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case,, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 109.  doi: 10.1016/S0764-4442(01)01999-1.  Google Scholar

[30]

Y. Zhou, Life span of classical solutions to $u_{t t} - u_{x x} = |u|^{1+\alpha}$,, Chinese Ann. Math. Ser. B, 13 (1992), 230.   Google Scholar

show all references

References:
[1]

M. D'Abbicco, The threshold of effective damping for semilinear wave equations,, Math. Methods Appl. Sci. (to appear)., ().   Google Scholar

[2]

M. D'Abbicco and S. Lucente, A modified test function method for damped wave equations,, Adv. Nonlinear Stud. 13 (2013), 13 (2013), 867.   Google Scholar

[3]

M. D'Abbicco, S. Lucente and M. Reissig, Semi-Linear wave equations with effective damping,, Chin. Ann. Math., 34 (2013), 345.  doi: 10.1007/s11401-013-0773-0.  Google Scholar

[4]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109.   Google Scholar

[5]

N. Hayashi, E. I. Kaikina and P. I. Naumkin, Damped wave equation with super critical nonlinearities,, Differential Integral Equations, 17 (2004), 637.   Google Scholar

[6]

T. Hosono and T. Ogawa, Large time behavior and $L^p$-$L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations,, J. Differential Equations, 203 (2004), 82.  doi: 10.1016/j.jde.2004.03.034.  Google Scholar

[7]

M. Ikeda and Y. Wakasugi, A note on the lifespan of solutions to the semilinear damped wave equation,, Proc. Amer. Math. Soc. (to appear)., ().   Google Scholar

[8]

R. Ikehata and K. Tanizawa, Global existence of solutions for semilinear damped wave equations in $\mathbfR^N$ with noncompactly supported initial data,, Nonliear Anal., 61 (2005), 1189.  doi: 10.1016/j.na.2005.01.097.  Google Scholar

[9]

R. Ikehata, G. Todorova and B. Yordanov, Critical exponent for semilinear wave equations with space-dependent potential,, Funkcialaj Ekvacioj, 52 (2009), 411.  doi: 10.1619/fesi.52.411.  Google Scholar

[10]

R. Ikehata, G. Todorova and B. Yordanov, Optimal decay rate of the energy for wave equations with critical potential,, J. Math. Soc. Japan, 65 (2013), 183.  doi: 10.2969/jmsj/06510183.  Google Scholar

[11]

T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations,, Comm. Pure Appl. Math., 33 (1980), 501.  doi: 10.1002/cpa.3160330403.  Google Scholar

[12]

J. S. Kenigson and J. J. Kenigson, Energy decay estimates for the dissipative wave equation with space-time dependent potential,, Math. Meth. Appl. Sci., 34 (2011), 48.  doi: 10.1002/mma.1330.  Google Scholar

[13]

M. Khader, Global existence for the dissipative wave equations with space-time dependent potential,, Nonlinear Anal., 81 (2013), 87.  doi: 10.1016/j.na.2012.10.015.  Google Scholar

[14]

H. Kuiper, Life span of nonnegative solutions to certain quasilinear parabolic Cauchy problems,, Electron. J. Differential Equations, 2003 (2003), 1.   Google Scholar

[15]

J. Lin, K. Nishihara and J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping,, Discrete Contin. Dyn. Syst., 32 (2012), 4307.  doi: 10.3934/dcds.2012.32.4307.  Google Scholar

[16]

P. Marcati and K. Nishihara, The $L^p-L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media,, J. Differential Equations, 191 (2003), 445.  doi: 10.1016/S0022-0396(03)00026-3.  Google Scholar

[17]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. Res. Inst. Math. Sci., 12 (): 169.  doi: 10.2977/prims/1195190962.  Google Scholar

[18]

K. Mochizuki, Scattering theory for wave equations with dissipative terms,, Publ. Res. Inst. Math. Sci., 12 (1976), 383.  doi: 10.2977/prims/1195190721.  Google Scholar

[19]

T. Narazaki, $L^p$-$L^q$ estimates for damped wave equations and their applications to semi-linear problem,, J. Math. Soc. Japan, 56 (2004), 585.  doi: 10.2969/jmsj/1191418647.  Google Scholar

[20]

K. Nishihara, $L^p-L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application,, Math. Z., 244 (2003), 631.   Google Scholar

[21]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping,, J. Differential Equations, 174 (2001), 464.  doi: 10.1006/jdeq.2000.3933.  Google Scholar

[22]

G. Todorova and B. Yordanov, Weighted $L^2$-estimates for dissipative wave equations with variable coefficients,, J. Differential Equations, 246 (2009), 4497.  doi: 10.1016/j.jde.2009.03.020.  Google Scholar

[23]

Y. Wakasugi, Small data global existence for the semilinear wave equation with space-time dependent damping,, J. Math. Anal. Appl., 393 (2012), 66.  doi: 10.1016/j.jmaa.2012.03.035.  Google Scholar

[24]

Y. Wakasugi, Critical exponent for the semilinear wave equation with scale invariant damping,, Trends in Mathematics, (2014), 375.  doi: 10.1007/978-3-319-02550-6_19.  Google Scholar

[25]

J. Wirth, Solution representations for a wave equation with weak dissipation,, Math. Meth. Appl. Sci., 27 (2004), 101.  doi: 10.1002/mma.446.  Google Scholar

[26]

J. Wirth, Wave equations with time-dependent dissipation I. Non-effective dissipation,, J. Differential Equations, 222 (2006), 487.  doi: 10.1016/j.jde.2005.07.019.  Google Scholar

[27]

J. Wirth, Wave equations with time-dependent dissipation II. Effective dissipation,, J. Differential Equations, 232 (2007), 74.  doi: 10.1016/j.jde.2006.06.004.  Google Scholar

[28]

H. Yang and A. Milani, On the diffusion phenomenon of quasilinear hyperbolic waves,, Bull. Sci. Math., 124 (2000), 415.  doi: 10.1016/S0007-4497(00)00141-X.  Google Scholar

[29]

Qi S. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case,, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 109.  doi: 10.1016/S0764-4442(01)01999-1.  Google Scholar

[30]

Y. Zhou, Life span of classical solutions to $u_{t t} - u_{x x} = |u|^{1+\alpha}$,, Chinese Ann. Math. Ser. B, 13 (1992), 230.   Google Scholar

[1]

Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315

[2]

Hiroyuki Takamura, Hiroshi Uesaka, Kyouhei Wakasa. Sharp blow-up for semilinear wave equations with non-compactly supported data. Conference Publications, 2011, 2011 (Special) : 1351-1357. doi: 10.3934/proc.2011.2011.1351

[3]

Kyouhei Wakasa. Blow-up of solutions to semilinear wave equations with non-zero initial data. Conference Publications, 2015, 2015 (special) : 1105-1114. doi: 10.3934/proc.2015.1105

[4]

Júlia Matos. Unfocused blow up solutions of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 905-928. doi: 10.3934/dcds.1999.5.905

[5]

John M. Ball. Global attractors for damped semilinear wave equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 31-52. doi: 10.3934/dcds.2004.10.31

[6]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[7]

Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585

[8]

Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733

[9]

Kyouhei Wakasa. The lifespan of solutions to semilinear damped wave equations in one space dimension. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1265-1283. doi: 10.3934/cpaa.2016.15.1265

[10]

Veronica Belleri, Vittorino Pata. Attractors for semilinear strongly damped wave equations on $\mathbb R^3$. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 719-735. doi: 10.3934/dcds.2001.7.719

[11]

Mengyun Liu, Chengbo Wang. Global existence for semilinear damped wave equations in relation with the Strauss conjecture. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 709-724. doi: 10.3934/dcds.2020058

[12]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

[13]

Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations & Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669

[14]

Ning-An Lai, Yi Zhou. Blow up for initial boundary value problem of critical semilinear wave equation in two space dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1499-1510. doi: 10.3934/cpaa.2018072

[15]

Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108

[16]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[17]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[18]

Martin Michálek, Dalibor Pražák, Jakub Slavík. Semilinear damped wave equation in locally uniform spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1673-1695. doi: 10.3934/cpaa.2017080

[19]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations & Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[20]

Francesca De Marchis, Isabella Ianni. Blow up of solutions of semilinear heat equations in non radial domains of $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 891-907. doi: 10.3934/dcds.2015.35.891

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]