\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables

Abstract Related Papers Cited by
  • In this paper, we give a small data blow-up result for the one-dimensional semilinear wave equation with damping depending on time and space variables. We show that if the damping term can be regarded as perturbation, that is, non-effective damping in a certain sense, then the solution blows up in finite time for any power of nonlinearity. This gives an affirmative answer for the conjecture that the critical exponent agrees with that of the wave equation when the damping is non-effective in one space dimension.
    Mathematics Subject Classification: Primary: 35L71; Secondary: 35B44.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. D'Abbicco, The threshold of effective damping for semilinear wave equations, Math. Methods Appl. Sci. (to appear).

    [2]

    M. D'Abbicco and S. Lucente, A modified test function method for damped wave equations, Adv. Nonlinear Stud. 13 (2013), 867-892.

    [3]

    M. D'Abbicco, S. Lucente and M. Reissig, Semi-Linear wave equations with effective damping, Chin. Ann. Math., Ser. B, 34 (2013), 345-380.doi: 10.1007/s11401-013-0773-0.

    [4]

    H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.

    [5]

    N. Hayashi, E. I. Kaikina and P. I. Naumkin, Damped wave equation with super critical nonlinearities, Differential Integral Equations, 17 (2004), 637-652.

    [6]

    T. Hosono and T. Ogawa, Large time behavior and $L^p$-$L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations, J. Differential Equations, 203 (2004), 82-118.doi: 10.1016/j.jde.2004.03.034.

    [7]

    M. Ikeda and Y. Wakasugi, A note on the lifespan of solutions to the semilinear damped wave equation, Proc. Amer. Math. Soc. (to appear).

    [8]

    R. Ikehata and K. Tanizawa, Global existence of solutions for semilinear damped wave equations in $\mathbfR^N$ with noncompactly supported initial data, Nonliear Anal., 61 (2005), 1189-1208.doi: 10.1016/j.na.2005.01.097.

    [9]

    R. Ikehata, G. Todorova and B. Yordanov, Critical exponent for semilinear wave equations with space-dependent potential, Funkcialaj Ekvacioj, 52 (2009), 411-435.doi: 10.1619/fesi.52.411.

    [10]

    R. Ikehata, G. Todorova and B. Yordanov, Optimal decay rate of the energy for wave equations with critical potential, J. Math. Soc. Japan, 65 (2013), 183-236.doi: 10.2969/jmsj/06510183.

    [11]

    T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations, Comm. Pure Appl. Math., 33 (1980), 501-505.doi: 10.1002/cpa.3160330403.

    [12]

    J. S. Kenigson and J. J. Kenigson, Energy decay estimates for the dissipative wave equation with space-time dependent potential, Math. Meth. Appl. Sci., 34 (2011), 48-62.doi: 10.1002/mma.1330.

    [13]

    M. Khader, Global existence for the dissipative wave equations with space-time dependent potential, Nonlinear Anal., 81 (2013), 87-100.doi: 10.1016/j.na.2012.10.015.

    [14]

    H. Kuiper, Life span of nonnegative solutions to certain quasilinear parabolic Cauchy problems, Electron. J. Differential Equations, 2003 (2003), 1-11.

    [15]

    J. Lin, K. Nishihara and J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping, Discrete Contin. Dyn. Syst., 32 (2012), 4307-4320.doi: 10.3934/dcds.2012.32.4307.

    [16]

    P. Marcati and K. Nishihara, The $L^p-L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differential Equations, 191 (2003), 445-469.doi: 10.1016/S0022-0396(03)00026-3.

    [17]

    A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations, Publ. Res. Inst. Math. Sci., 12 (1976/77), 169-189. doi: 10.2977/prims/1195190962.

    [18]

    K. Mochizuki, Scattering theory for wave equations with dissipative terms, Publ. Res. Inst. Math. Sci., 12 (1976), 383-390.doi: 10.2977/prims/1195190721.

    [19]

    T. Narazaki, $L^p$-$L^q$ estimates for damped wave equations and their applications to semi-linear problem, J. Math. Soc. Japan, 56 (2004), 585-626.doi: 10.2969/jmsj/1191418647.

    [20]

    K. Nishihara, $L^p-L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application, Math. Z., 244 (2003), 631-649.

    [21]

    G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489.doi: 10.1006/jdeq.2000.3933.

    [22]

    G. Todorova and B. Yordanov, Weighted $L^2$-estimates for dissipative wave equations with variable coefficients, J. Differential Equations, 246 (2009), 4497-4518.doi: 10.1016/j.jde.2009.03.020.

    [23]

    Y. Wakasugi, Small data global existence for the semilinear wave equation with space-time dependent damping, J. Math. Anal. Appl., 393 (2012), 66-79.doi: 10.1016/j.jmaa.2012.03.035.

    [24]

    Y. Wakasugi, Critical exponent for the semilinear wave equation with scale invariant damping, Trends in Mathematics, (2014), 375-390.doi: 10.1007/978-3-319-02550-6_19.

    [25]

    J. Wirth, Solution representations for a wave equation with weak dissipation, Math. Meth. Appl. Sci., 27 (2004), 101-124.doi: 10.1002/mma.446.

    [26]

    J. Wirth, Wave equations with time-dependent dissipation I. Non-effective dissipation, J. Differential Equations, 222 (2006), 487-514.doi: 10.1016/j.jde.2005.07.019.

    [27]

    J. Wirth, Wave equations with time-dependent dissipation II. Effective dissipation, J. Differential Equations, 232 (2007), 74-103.doi: 10.1016/j.jde.2006.06.004.

    [28]

    H. Yang and A. Milani, On the diffusion phenomenon of quasilinear hyperbolic waves, Bull. Sci. Math., 124 (2000), 415-433.doi: 10.1016/S0007-4497(00)00141-X.

    [29]

    Qi S. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 109-114.doi: 10.1016/S0764-4442(01)01999-1.

    [30]

    Y. Zhou, Life span of classical solutions to $u_{t t} - u_{x x} = |u|^{1+\alpha}$, Chinese Ann. Math. Ser. B, 13 (1992), 230-243.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(128) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return