Citation: |
[1] |
J. Ban, Y. Cao and H. Hu, The dimensions of a non-conformal repeller and an average conformal repeller, Trans. Amer. Math. Soc., 362 (2010), 727-751.doi: 10.1090/S0002-9947-09-04922-8. |
[2] |
L. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Ergod. Th. Dynam. Syst., 16 (1996), 871-927.doi: 10.1017/S0143385700010117. |
[3] |
L. Barreira, Dimension estimates in nonconformal hyperbolic dynamics, Nonlinearity, 16 (2003), 1657-1672.doi: 10.1088/0951-7715/16/5/307. |
[4] |
L. Barreira, Dimension and Recurrence in Hyperbolic Dynamics, Progress in Mathematics, 272, Birkhäuser Verlag, Basel, 2008. |
[5] |
L. Barreira, Thermodynamic Formalism and Applications to Dimension Theory, Progress in Mathematics, 294, Birkhäuser, Springer Basel, 2011.doi: 10.1007/978-3-0348-0206-2. |
[6] |
L. Barreira and K. Gelfert, Dimension estimates in smooth dynamics: A survey of recent results, Ergod. Th. Dynam. Syst., 31 (2011), 641-671.doi: 10.1017/S014338571000012X. |
[7] |
L. Barreira and C. Wolf, Pointwise dimension and ergodic decompositions, Ergod. Th. Dynam. Syst., 26 (2006), 653-671.doi: 10.1017/S0143385705000672. |
[8] |
L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension, Israel J. Math., 116 (2000), 29-70.doi: 10.1007/BF02773211. |
[9] |
R. Bowen, Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 11-25. |
[10] |
R. Bowen, Equlibrium States and the Ergodic Theory of Anosov Diffeomorphism, Lecture Notes in Mathematics, 470, Springer, New York-Heidelberg-Berlin, 1975. |
[11] |
M. Brin and A. Katok, On Local Entropy, in Geometric dynamics (Rio de Janeiro, 1981), Lecture Notes in Math., 1007, Springer, Berlin, (1983), 30-38.doi: 10.1007/BFb0061408. |
[12] |
Y. Cao, D. Feng and W. Huang, The thermodynamic formalism for sub-additive potentials, Discret. Contin. Dynam. Syst., 20 (2008), 639-657. |
[13] |
Y. Cao, H. Hu and Y. Zhao, Nonadditive measure-theoretic pressure and applications to dimensions of an ergodic measure, Ergod. Th. Dynam. Syst., 33 (2013), 831-850.doi: 10.1017/S0143385712000090. |
[14] |
Y. Cao, Dimension spectrum of asymptotically additive potentials for $C^1$ average conformal repellers, Nonlinearity, 26 (2013), 2441-2468.doi: 10.1088/0951-7715/26/9/2441. |
[15] |
J. Chen and Y. Pesin, Dimension of non-conformal repellers: A survey, Nonlinearity, 23 (2010), R93-R114.doi: 10.1088/0951-7715/23/4/R01. |
[16] |
W. Cheng, Y. Zhao and Y. Cao, Pressures for asymptotically subadditive potentials under a mistake funciton, Discret. Contin. Dyn. Syst., 32 (2012), 487-497.doi: 10.3934/dcds.2012.32.487. |
[17] |
V. Climenhaga, Bowen's equation in the non-uniform setting, Ergod. Th. Dynam. Syst., 31 (2011), 1163-1182.doi: 10.1017/S0143385710000362. |
[18] |
M. Denker and M. Urbański, Ergodic theory of equilibrium states for rational maps, Nonlinearity, 4 (1991), 103-134.doi: 10.1088/0951-7715/4/1/008. |
[19] |
K. Falconer, Fractal Geometry-Mathematical Foundations and Applications, Second edition. John Wiley & Sons, Inc., Hoboken, NJ, 2003.doi: 10.1002/0470013850. |
[20] |
K. Falconer, Bounded distortion and dimension for non-conformal repellers, Math. Proc. Camb. Phil. Soc., 115 (1994), 315-334.doi: 10.1017/S030500410007211X. |
[21] |
D. Gatzouras and Y. Peres, Invariant measures of full dimension for some expanding maps, Ergod. Th. Dynam. Syst., 17 (1997), 147-167.doi: 10.1017/S0143385797060987. |
[22] |
H. Hu, Dimensions of invariant sets of expanding maps, Commun. Math. Phys., 176 (1996), 307-320.doi: 10.1007/BF02099551. |
[23] |
W. Huang and P. Zhang, Pointwise dimension, entropy and Lyapunov exponents for $C^1$ map, Trans. Amer. Math. Soc., 364 (2012), 6355-6370.doi: 10.1090/S0002-9947-2012-05527-9. |
[24] |
F. Ledrappier, Some relations between dimension and Lyapunov exponent, Commun. Math. Phys., 81 (1981), 229-238.doi: 10.1007/BF01208896. |
[25] |
V. Mayer and M. Urbański, Geometric thermodynamic formalism and real analyticity for meromorphic functions of finite order, Ergod. Th. Dynam. Syst., 28 (2008), 915-946.doi: 10.1017/S0143385707000648. |
[26] |
V. Mayer and M. Urbański, Thermodynamical formalism and multifractal analysis for meromorphic functions of finite order, Mem. Amer. Math. Soc., 203 (2010), vi+107 pp.doi: 10.1090/S0065-9266-09-00577-8. |
[27] |
V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Lyapnov exponents of dynamical systems, Trudy Moskov. Mat. Obšž, 19 (1968), 179-210. |
[28] |
Y. Pesin, Dimension Theory in Dynamical Systems, Contemporary Views and Applications, Chicago: University of Chicago Press, 1997. |
[29] |
F. Przytycki, J. Letelier and S. Smirnov, Equivalence and topo- logical invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math., 151 (2003), 29-63.doi: 10.1007/s00222-002-0243-x. |
[30] |
F. Przytycki, J. Letelier and S. Smirnov, Equality of pressures for rational functions, Ergod. Th. Dynam. Syst., 24 (2004), 891-914.doi: 10.1017/S0143385703000385. |
[31] |
F. Przytycki and M. Urbažski, Conformal Fractals: Ergodic Theory Methods, London Mathematical Society, Lecture Note Series 371, Cambridge University Press, Cambridge, 2010. |
[32] |
D. Ruelle, Repellers for real analytic maps, Ergod. Th. Dynam. Syst., 2 (1982), 99-107.doi: 10.1017/S0143385700009603. |
[33] |
D. Ruelle, An inequality for the entropy of differential maps, Bol. Soc. Bras. De Mat., 9 (1978), 83-87.doi: 10.1007/BF02584795. |
[34] |
H. Rugh, On the dimensions of conformal repellers. Randomness and parameter dependency, Annals of Mathematics, 168 (2008), 695-748.doi: 10.4007/annals.2008.168.695. |
[35] |
M. Urbažski, On the Hausdorff dimension of a Julia set with a rationally indifferent periodic point, Studia Math., 97 (1991), 167-188. |
[36] |
M. Urbažski, Parabolic Cantor sets, Fund. Math., 151 (1996), 241-277. |
[37] |
M. Urbažski and A. Zdunik, Real analyticity of Hausdorff dimension of finer Julia sets of exponential family, Ergod. Th. Dynam. Syst., 24 (2004), 279-315.doi: 10.1017/S0143385703000208. |
[38] |
P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982. |
[39] |
C. Wolf, On the box dimension of an invariant set, Nonlinearity, 14 (2001), 73-79.doi: 10.1088/0951-7715/14/1/303. |
[40] |
L. S. Young, Dimension, entropy and Lyapunov exponents, Ergod. th. Dynam. Syst., 2 (1982), 109-124.doi: 10.1017/S0143385700009615. |
[41] |
Y. Zhang, Dynamical upper bounds for Hausdorff dimension of invariant sets, Ergod. Th. Dynam. Syst., 17 (1997), 739-756.doi: 10.1017/S0143385797085003. |
[42] |
Y. Zhao and Y. Cao, Measure-theoretic pressure for subadditive potentials, Nonlinear analysis, 70 (2009), 2237-2247.doi: 10.1016/j.na.2008.03.003. |
[43] |
Y. Zhao, A note on the measure-theoretic pressure in subadditive case, Chinese Annals of Math., Series A, 29 (2008), 325-332. |