September  2014, 34(9): 3875-3899. doi: 10.3934/dcds.2014.34.3875

Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion

1. 

School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China

2. 

Department of Mathematics, College of William and Mary, Williamsburg, Virginia, 23187-8795, United States

Received  August 2013 Revised  November 2013 Published  March 2014

In this paper we consider a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion under zero Dirichlet boundary condition. By using topological degree theory, bifurcation theory, energy estimates and asymptotic behavior analysis, we prove the existence, uniqueness and multiplicity of positive steady states solutions under certain conditions on the parameters.
Citation: Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875
References:
[1]

M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes,, Appl. Math. Lett., 16 (2003), 1069. doi: 10.1016/S0893-9659(03)90096-6. Google Scholar

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations,, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons Ltd., (2003). doi: 10.1002/0470871296. Google Scholar

[3]

A. Casal, J. C. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion,, Differential Integral Equations, 7 (1994), 411. Google Scholar

[4]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2. Google Scholar

[5]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, Arch. Rational Mech. Anal., 52 (1973), 161. Google Scholar

[6]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications,, J. Math. Anal. Appl., 91 (1983), 131. doi: 10.1016/0022-247X(83)90098-7. Google Scholar

[7]

E. N. Dancer, On positive solutions of some pairs of differential equations,, Trans. Amer. Math. Soc., 284 (1984), 729. doi: 10.1090/S0002-9947-1984-0743741-4. Google Scholar

[8]

E. N. Dancer and Y. Du, Competing species equations with diffusion, large interactions, and jumpting nonlinearities,, J. Differential Equaitons, 114 (1994), 434. doi: 10.1006/jdeq.1994.1156. Google Scholar

[9]

Y. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey mmodel,, Trans. Amer. Math. Soc., 349 (1997), 2443. doi: 10.1090/S0002-9947-97-01842-4. Google Scholar

[10]

Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model,, J. Differential Equaitons, 144 (1998), 390. doi: 10.1006/jdeq.1997.3394. Google Scholar

[11]

Y. Du, R. Peng and M. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model,, J. Differential Equaitons, 246 (2009), 3932. doi: 10.1016/j.jde.2008.11.007. Google Scholar

[12]

Y. Du and J. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment,, In Nonlinear dynamics and evolution equations, (2006), 95. Google Scholar

[13]

Y. Du and J. Shi, A diffusive predator-prey model with a protection zone,, J. Differential Equaitons, 229 (2006), 63. doi: 10.1016/j.jde.2006.01.013. Google Scholar

[14]

B. Dubey, B. Das and J. Hussain, A predator-prey interaction model with self and cross-diffusion,, Ecological Modelling, 141 (2001), 67. doi: 10.1016/S0304-3800(01)00255-1. Google Scholar

[15]

C. Gui and Y. Lou, Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model,, Comm. Pure Appl. Math., 47 (1994), 1571. doi: 10.1002/cpa.3160471203. Google Scholar

[16]

C. S. Holling, Some characteristics of simple types of predation and parasitism,, The Canadian Entomologist, 91 (1959), 382. doi: 10.4039/Ent91385-7. Google Scholar

[17]

Y. Kan-on, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics,, Hiroshima Math. J., 23 (1993), 509. Google Scholar

[18]

T. Kato, Perturbation Theory for Linear Operators,, Classics in Mathematics. Springer-Verlag, (1995). Google Scholar

[19]

K. Kuto, Stability of steady-state solutions to a prey-predator system with cross-diffusion,, J. Differential Equations, 197 (2004), 293. doi: 10.1016/j.jde.2003.10.016. Google Scholar

[20]

K. Kuto, Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment,, Nonlinear Anal. Real World Appl., 10 (2009), 943. doi: 10.1016/j.nonrwa.2007.11.015. Google Scholar

[21]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion,, J. Differential Equations, 197 (2004), 315. doi: 10.1016/j.jde.2003.08.003. Google Scholar

[22]

K. Kuto and Y. Yamada, Positive solutions for Lotka-Volterra competition systems with large cross-diffusion,, Appl. Anal., 89 (2010), 1037. doi: 10.1080/00036811003627534. Google Scholar

[23]

P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species,, Biometrika, 47 (1960), 219. Google Scholar

[24]

A. W. Leung, Nonlinear Systems of Partial Differential Equations,, World Scientific Publishing Co. Pte. Ltd., (2009). doi: 10.1142/9789814277709. Google Scholar

[25]

L. Li, Coexistence theorems of steady states for predator-prey interacting systems,, Trans. Amer. Math. Soc., 305 (1988), 143. doi: 10.1090/S0002-9947-1988-0920151-1. Google Scholar

[26]

Z. Lin and M. Pedersen, Coexistence of a general elliptic system in population dynamics,, Comput. Math. Appl., 48 (2004), 617. doi: 10.1016/j.camwa.2003.01.016. Google Scholar

[27]

J. López-Gómez, Positive periodic solutions of Lotka-Volterra reaction-diffusion systems,, Differential Integral Equations, 5 (1992), 55. Google Scholar

[28]

J. López-Gómez and R. Pardo, Existence and uniqueness of coexistence states for the predator-prey model with diffusion: the scalar case,, Differential Integral Equations, 6 (1993), 1025. Google Scholar

[29]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79. doi: 10.1006/jdeq.1996.0157. Google Scholar

[30]

Y. Lou and W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach,, J. Differential Equations, 154 (1999), 157. doi: 10.1006/jdeq.1998.3559. Google Scholar

[31]

M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics,, Hiroshima Math. J., 11 (1981), 621. Google Scholar

[32]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49. doi: 10.1007/BF00276035. Google Scholar

[33]

K. Nakashima and Y. Yamada, Positive steady states for prey-predator models with cross-diffusion,, Adv. Differential Equations, 1 (1996), 1099. Google Scholar

[34]

C. Neuhauser, Mathematical challenges in spatial ecology,, Notices Amer. Math. Soc., 48 (2001), 1304. Google Scholar

[35]

K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone,, J. Differential Equations, 250 (2011), 3988. doi: 10.1016/j.jde.2011.01.026. Google Scholar

[36]

A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives,, Springer-Verlag, (2001). Google Scholar

[37]

C. V. Pao, Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion,, Nonlinear Anal., 60 (2005), 1197. doi: 10.1016/j.na.2004.10.008. Google Scholar

[38]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Functional Analysis, 7 (1971), 487. doi: 10.1016/0022-1236(71)90030-9. Google Scholar

[39]

W. H. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients,, J. Math. Anal. Appl., 197 (1996), 558. doi: 10.1006/jmaa.1996.0039. Google Scholar

[40]

K. Ryu and I. Ahn, Positive coexistence of steady states for competitive interacting system with self-diffusion pressures,, Bull. Korean Math. Soc., 38 (2001), 643. Google Scholar

[41]

K. Ryu and I. Ahn, Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics,, J. Math. Anal. Appl., 283 (2003), 46. doi: 10.1016/S0022-247X(03)00162-8. Google Scholar

[42]

K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions,, Discrete Contin. Dyn. Syst., 9 (2003), 1049. doi: 10.3934/dcds.2003.9.1049. Google Scholar

[43]

J. Shi, Persistence and bifurcation of degenerate solutions,, J. Funct. Anal., 169 (1999), 494. doi: 10.1006/jfan.1999.3483. Google Scholar

[44]

J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains,, J. Differential Equations, 246 (2009), 2788. doi: 10.1016/j.jde.2008.09.009. Google Scholar

[45]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theoret. Biol., 79 (1979), 83. doi: 10.1016/0022-5193(79)90258-3. Google Scholar

[46]

Y. Yamada, Positive solutions for Lotka-Volterra systems with cross-diffusion,, In Handbook of differential equations: stationary partial differential equations. Vol. VI, (2008), 411. doi: 10.1016/S1874-5733(08)80023-X. Google Scholar

[47]

C.-H. Zhang and X. P. Yan, Positive solutions bifurcating from zero solution in a Lotka-Volterra competitive system with cross-diffusion effects,, Appl. Math. J. Chinese Univ. Ser. B, 26 (2011), 342. doi: 10.1007/s11766-011-2737-z. Google Scholar

[48]

J. Zhou, Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes,, J. Math. Anal. Appl., 389 (2012), 1380. doi: 10.1016/j.jmaa.2012.01.013. Google Scholar

[49]

J. Zhou and J. Shi, The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses,, J. Math. Anal. Appl., 405 (2013), 618. doi: 10.1016/j.jmaa.2013.03.064. Google Scholar

show all references

References:
[1]

M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes,, Appl. Math. Lett., 16 (2003), 1069. doi: 10.1016/S0893-9659(03)90096-6. Google Scholar

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations,, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons Ltd., (2003). doi: 10.1002/0470871296. Google Scholar

[3]

A. Casal, J. C. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion,, Differential Integral Equations, 7 (1994), 411. Google Scholar

[4]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2. Google Scholar

[5]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, Arch. Rational Mech. Anal., 52 (1973), 161. Google Scholar

[6]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications,, J. Math. Anal. Appl., 91 (1983), 131. doi: 10.1016/0022-247X(83)90098-7. Google Scholar

[7]

E. N. Dancer, On positive solutions of some pairs of differential equations,, Trans. Amer. Math. Soc., 284 (1984), 729. doi: 10.1090/S0002-9947-1984-0743741-4. Google Scholar

[8]

E. N. Dancer and Y. Du, Competing species equations with diffusion, large interactions, and jumpting nonlinearities,, J. Differential Equaitons, 114 (1994), 434. doi: 10.1006/jdeq.1994.1156. Google Scholar

[9]

Y. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey mmodel,, Trans. Amer. Math. Soc., 349 (1997), 2443. doi: 10.1090/S0002-9947-97-01842-4. Google Scholar

[10]

Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model,, J. Differential Equaitons, 144 (1998), 390. doi: 10.1006/jdeq.1997.3394. Google Scholar

[11]

Y. Du, R. Peng and M. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model,, J. Differential Equaitons, 246 (2009), 3932. doi: 10.1016/j.jde.2008.11.007. Google Scholar

[12]

Y. Du and J. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment,, In Nonlinear dynamics and evolution equations, (2006), 95. Google Scholar

[13]

Y. Du and J. Shi, A diffusive predator-prey model with a protection zone,, J. Differential Equaitons, 229 (2006), 63. doi: 10.1016/j.jde.2006.01.013. Google Scholar

[14]

B. Dubey, B. Das and J. Hussain, A predator-prey interaction model with self and cross-diffusion,, Ecological Modelling, 141 (2001), 67. doi: 10.1016/S0304-3800(01)00255-1. Google Scholar

[15]

C. Gui and Y. Lou, Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model,, Comm. Pure Appl. Math., 47 (1994), 1571. doi: 10.1002/cpa.3160471203. Google Scholar

[16]

C. S. Holling, Some characteristics of simple types of predation and parasitism,, The Canadian Entomologist, 91 (1959), 382. doi: 10.4039/Ent91385-7. Google Scholar

[17]

Y. Kan-on, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics,, Hiroshima Math. J., 23 (1993), 509. Google Scholar

[18]

T. Kato, Perturbation Theory for Linear Operators,, Classics in Mathematics. Springer-Verlag, (1995). Google Scholar

[19]

K. Kuto, Stability of steady-state solutions to a prey-predator system with cross-diffusion,, J. Differential Equations, 197 (2004), 293. doi: 10.1016/j.jde.2003.10.016. Google Scholar

[20]

K. Kuto, Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment,, Nonlinear Anal. Real World Appl., 10 (2009), 943. doi: 10.1016/j.nonrwa.2007.11.015. Google Scholar

[21]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion,, J. Differential Equations, 197 (2004), 315. doi: 10.1016/j.jde.2003.08.003. Google Scholar

[22]

K. Kuto and Y. Yamada, Positive solutions for Lotka-Volterra competition systems with large cross-diffusion,, Appl. Anal., 89 (2010), 1037. doi: 10.1080/00036811003627534. Google Scholar

[23]

P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species,, Biometrika, 47 (1960), 219. Google Scholar

[24]

A. W. Leung, Nonlinear Systems of Partial Differential Equations,, World Scientific Publishing Co. Pte. Ltd., (2009). doi: 10.1142/9789814277709. Google Scholar

[25]

L. Li, Coexistence theorems of steady states for predator-prey interacting systems,, Trans. Amer. Math. Soc., 305 (1988), 143. doi: 10.1090/S0002-9947-1988-0920151-1. Google Scholar

[26]

Z. Lin and M. Pedersen, Coexistence of a general elliptic system in population dynamics,, Comput. Math. Appl., 48 (2004), 617. doi: 10.1016/j.camwa.2003.01.016. Google Scholar

[27]

J. López-Gómez, Positive periodic solutions of Lotka-Volterra reaction-diffusion systems,, Differential Integral Equations, 5 (1992), 55. Google Scholar

[28]

J. López-Gómez and R. Pardo, Existence and uniqueness of coexistence states for the predator-prey model with diffusion: the scalar case,, Differential Integral Equations, 6 (1993), 1025. Google Scholar

[29]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79. doi: 10.1006/jdeq.1996.0157. Google Scholar

[30]

Y. Lou and W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach,, J. Differential Equations, 154 (1999), 157. doi: 10.1006/jdeq.1998.3559. Google Scholar

[31]

M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics,, Hiroshima Math. J., 11 (1981), 621. Google Scholar

[32]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49. doi: 10.1007/BF00276035. Google Scholar

[33]

K. Nakashima and Y. Yamada, Positive steady states for prey-predator models with cross-diffusion,, Adv. Differential Equations, 1 (1996), 1099. Google Scholar

[34]

C. Neuhauser, Mathematical challenges in spatial ecology,, Notices Amer. Math. Soc., 48 (2001), 1304. Google Scholar

[35]

K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone,, J. Differential Equations, 250 (2011), 3988. doi: 10.1016/j.jde.2011.01.026. Google Scholar

[36]

A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives,, Springer-Verlag, (2001). Google Scholar

[37]

C. V. Pao, Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion,, Nonlinear Anal., 60 (2005), 1197. doi: 10.1016/j.na.2004.10.008. Google Scholar

[38]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Functional Analysis, 7 (1971), 487. doi: 10.1016/0022-1236(71)90030-9. Google Scholar

[39]

W. H. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients,, J. Math. Anal. Appl., 197 (1996), 558. doi: 10.1006/jmaa.1996.0039. Google Scholar

[40]

K. Ryu and I. Ahn, Positive coexistence of steady states for competitive interacting system with self-diffusion pressures,, Bull. Korean Math. Soc., 38 (2001), 643. Google Scholar

[41]

K. Ryu and I. Ahn, Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics,, J. Math. Anal. Appl., 283 (2003), 46. doi: 10.1016/S0022-247X(03)00162-8. Google Scholar

[42]

K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions,, Discrete Contin. Dyn. Syst., 9 (2003), 1049. doi: 10.3934/dcds.2003.9.1049. Google Scholar

[43]

J. Shi, Persistence and bifurcation of degenerate solutions,, J. Funct. Anal., 169 (1999), 494. doi: 10.1006/jfan.1999.3483. Google Scholar

[44]

J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains,, J. Differential Equations, 246 (2009), 2788. doi: 10.1016/j.jde.2008.09.009. Google Scholar

[45]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theoret. Biol., 79 (1979), 83. doi: 10.1016/0022-5193(79)90258-3. Google Scholar

[46]

Y. Yamada, Positive solutions for Lotka-Volterra systems with cross-diffusion,, In Handbook of differential equations: stationary partial differential equations. Vol. VI, (2008), 411. doi: 10.1016/S1874-5733(08)80023-X. Google Scholar

[47]

C.-H. Zhang and X. P. Yan, Positive solutions bifurcating from zero solution in a Lotka-Volterra competitive system with cross-diffusion effects,, Appl. Math. J. Chinese Univ. Ser. B, 26 (2011), 342. doi: 10.1007/s11766-011-2737-z. Google Scholar

[48]

J. Zhou, Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes,, J. Math. Anal. Appl., 389 (2012), 1380. doi: 10.1016/j.jmaa.2012.01.013. Google Scholar

[49]

J. Zhou and J. Shi, The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses,, J. Math. Anal. Appl., 405 (2013), 618. doi: 10.1016/j.jmaa.2013.03.064. Google Scholar

[1]

Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203

[2]

Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228

[3]

Walid Abid, Radouane Yafia, M.A. Aziz-Alaoui, Habib Bouhafa, Azgal Abichou. Global dynamics on a circular domain of a diffusion predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional type. Evolution Equations & Control Theory, 2015, 4 (2) : 115-129. doi: 10.3934/eect.2015.4.115

[4]

Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597

[5]

Jun Zhou. Qualitative analysis of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1127-1145. doi: 10.3934/cpaa.2015.14.1127

[6]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure & Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[7]

Yunfeng Liu, Zhiming Guo, Mohammad El Smaily, Lin Wang. A Leslie-Gower predator-prey model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2063-2084. doi: 10.3934/dcdss.2019133

[8]

Safia Slimani, Paul Raynaud de Fitte, Islam Boussaada. Dynamics of a prey-predator system with modified Leslie-Gower and Holling type Ⅱ schemes incorporating a prey refuge. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5003-5039. doi: 10.3934/dcdsb.2019042

[9]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[10]

Shuping Li, Weinian Zhang. Bifurcations of a discrete prey-predator model with Holling type II functional response. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 159-176. doi: 10.3934/dcdsb.2010.14.159

[11]

Hongmei Cheng, Rong Yuan. Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5433-5454. doi: 10.3934/dcds.2017236

[12]

Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607

[13]

Jian Zu, Wendi Wang, Bo Zu. Evolutionary dynamics of prey-predator systems with Holling type II functional response. Mathematical Biosciences & Engineering, 2007, 4 (2) : 221-237. doi: 10.3934/mbe.2007.4.221

[14]

Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019214

[15]

Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345

[16]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[17]

Changrong Zhu, Lei Kong. Bifurcations analysis of Leslie-Gower predator-prey models with nonlinear predator-harvesting. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1187-1206. doi: 10.3934/dcdss.2017065

[18]

C. R. Zhu, K. Q. Lan. Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 289-306. doi: 10.3934/dcdsb.2010.14.289

[19]

Zhifu Xie. Turing instability in a coupled predator-prey model with different Holling type functional responses. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1621-1628. doi: 10.3934/dcdss.2011.4.1621

[20]

Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]