September  2014, 34(9): 3875-3899. doi: 10.3934/dcds.2014.34.3875

Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion

1. 

School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China

2. 

Department of Mathematics, College of William and Mary, Williamsburg, Virginia, 23187-8795, United States

Received  August 2013 Revised  November 2013 Published  March 2014

In this paper we consider a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion under zero Dirichlet boundary condition. By using topological degree theory, bifurcation theory, energy estimates and asymptotic behavior analysis, we prove the existence, uniqueness and multiplicity of positive steady states solutions under certain conditions on the parameters.
Citation: Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875
References:
[1]

M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes,, Appl. Math. Lett., 16 (2003), 1069.  doi: 10.1016/S0893-9659(03)90096-6.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations,, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons Ltd., (2003).  doi: 10.1002/0470871296.  Google Scholar

[3]

A. Casal, J. C. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion,, Differential Integral Equations, 7 (1994), 411.   Google Scholar

[4]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[5]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, Arch. Rational Mech. Anal., 52 (1973), 161.   Google Scholar

[6]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications,, J. Math. Anal. Appl., 91 (1983), 131.  doi: 10.1016/0022-247X(83)90098-7.  Google Scholar

[7]

E. N. Dancer, On positive solutions of some pairs of differential equations,, Trans. Amer. Math. Soc., 284 (1984), 729.  doi: 10.1090/S0002-9947-1984-0743741-4.  Google Scholar

[8]

E. N. Dancer and Y. Du, Competing species equations with diffusion, large interactions, and jumpting nonlinearities,, J. Differential Equaitons, 114 (1994), 434.  doi: 10.1006/jdeq.1994.1156.  Google Scholar

[9]

Y. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey mmodel,, Trans. Amer. Math. Soc., 349 (1997), 2443.  doi: 10.1090/S0002-9947-97-01842-4.  Google Scholar

[10]

Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model,, J. Differential Equaitons, 144 (1998), 390.  doi: 10.1006/jdeq.1997.3394.  Google Scholar

[11]

Y. Du, R. Peng and M. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model,, J. Differential Equaitons, 246 (2009), 3932.  doi: 10.1016/j.jde.2008.11.007.  Google Scholar

[12]

Y. Du and J. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment,, In Nonlinear dynamics and evolution equations, (2006), 95.   Google Scholar

[13]

Y. Du and J. Shi, A diffusive predator-prey model with a protection zone,, J. Differential Equaitons, 229 (2006), 63.  doi: 10.1016/j.jde.2006.01.013.  Google Scholar

[14]

B. Dubey, B. Das and J. Hussain, A predator-prey interaction model with self and cross-diffusion,, Ecological Modelling, 141 (2001), 67.  doi: 10.1016/S0304-3800(01)00255-1.  Google Scholar

[15]

C. Gui and Y. Lou, Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model,, Comm. Pure Appl. Math., 47 (1994), 1571.  doi: 10.1002/cpa.3160471203.  Google Scholar

[16]

C. S. Holling, Some characteristics of simple types of predation and parasitism,, The Canadian Entomologist, 91 (1959), 382.  doi: 10.4039/Ent91385-7.  Google Scholar

[17]

Y. Kan-on, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics,, Hiroshima Math. J., 23 (1993), 509.   Google Scholar

[18]

T. Kato, Perturbation Theory for Linear Operators,, Classics in Mathematics. Springer-Verlag, (1995).   Google Scholar

[19]

K. Kuto, Stability of steady-state solutions to a prey-predator system with cross-diffusion,, J. Differential Equations, 197 (2004), 293.  doi: 10.1016/j.jde.2003.10.016.  Google Scholar

[20]

K. Kuto, Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment,, Nonlinear Anal. Real World Appl., 10 (2009), 943.  doi: 10.1016/j.nonrwa.2007.11.015.  Google Scholar

[21]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion,, J. Differential Equations, 197 (2004), 315.  doi: 10.1016/j.jde.2003.08.003.  Google Scholar

[22]

K. Kuto and Y. Yamada, Positive solutions for Lotka-Volterra competition systems with large cross-diffusion,, Appl. Anal., 89 (2010), 1037.  doi: 10.1080/00036811003627534.  Google Scholar

[23]

P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species,, Biometrika, 47 (1960), 219.   Google Scholar

[24]

A. W. Leung, Nonlinear Systems of Partial Differential Equations,, World Scientific Publishing Co. Pte. Ltd., (2009).  doi: 10.1142/9789814277709.  Google Scholar

[25]

L. Li, Coexistence theorems of steady states for predator-prey interacting systems,, Trans. Amer. Math. Soc., 305 (1988), 143.  doi: 10.1090/S0002-9947-1988-0920151-1.  Google Scholar

[26]

Z. Lin and M. Pedersen, Coexistence of a general elliptic system in population dynamics,, Comput. Math. Appl., 48 (2004), 617.  doi: 10.1016/j.camwa.2003.01.016.  Google Scholar

[27]

J. López-Gómez, Positive periodic solutions of Lotka-Volterra reaction-diffusion systems,, Differential Integral Equations, 5 (1992), 55.   Google Scholar

[28]

J. López-Gómez and R. Pardo, Existence and uniqueness of coexistence states for the predator-prey model with diffusion: the scalar case,, Differential Integral Equations, 6 (1993), 1025.   Google Scholar

[29]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[30]

Y. Lou and W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach,, J. Differential Equations, 154 (1999), 157.  doi: 10.1006/jdeq.1998.3559.  Google Scholar

[31]

M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics,, Hiroshima Math. J., 11 (1981), 621.   Google Scholar

[32]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.  doi: 10.1007/BF00276035.  Google Scholar

[33]

K. Nakashima and Y. Yamada, Positive steady states for prey-predator models with cross-diffusion,, Adv. Differential Equations, 1 (1996), 1099.   Google Scholar

[34]

C. Neuhauser, Mathematical challenges in spatial ecology,, Notices Amer. Math. Soc., 48 (2001), 1304.   Google Scholar

[35]

K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone,, J. Differential Equations, 250 (2011), 3988.  doi: 10.1016/j.jde.2011.01.026.  Google Scholar

[36]

A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives,, Springer-Verlag, (2001).   Google Scholar

[37]

C. V. Pao, Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion,, Nonlinear Anal., 60 (2005), 1197.  doi: 10.1016/j.na.2004.10.008.  Google Scholar

[38]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Functional Analysis, 7 (1971), 487.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[39]

W. H. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients,, J. Math. Anal. Appl., 197 (1996), 558.  doi: 10.1006/jmaa.1996.0039.  Google Scholar

[40]

K. Ryu and I. Ahn, Positive coexistence of steady states for competitive interacting system with self-diffusion pressures,, Bull. Korean Math. Soc., 38 (2001), 643.   Google Scholar

[41]

K. Ryu and I. Ahn, Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics,, J. Math. Anal. Appl., 283 (2003), 46.  doi: 10.1016/S0022-247X(03)00162-8.  Google Scholar

[42]

K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions,, Discrete Contin. Dyn. Syst., 9 (2003), 1049.  doi: 10.3934/dcds.2003.9.1049.  Google Scholar

[43]

J. Shi, Persistence and bifurcation of degenerate solutions,, J. Funct. Anal., 169 (1999), 494.  doi: 10.1006/jfan.1999.3483.  Google Scholar

[44]

J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains,, J. Differential Equations, 246 (2009), 2788.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[45]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theoret. Biol., 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[46]

Y. Yamada, Positive solutions for Lotka-Volterra systems with cross-diffusion,, In Handbook of differential equations: stationary partial differential equations. Vol. VI, (2008), 411.  doi: 10.1016/S1874-5733(08)80023-X.  Google Scholar

[47]

C.-H. Zhang and X. P. Yan, Positive solutions bifurcating from zero solution in a Lotka-Volterra competitive system with cross-diffusion effects,, Appl. Math. J. Chinese Univ. Ser. B, 26 (2011), 342.  doi: 10.1007/s11766-011-2737-z.  Google Scholar

[48]

J. Zhou, Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes,, J. Math. Anal. Appl., 389 (2012), 1380.  doi: 10.1016/j.jmaa.2012.01.013.  Google Scholar

[49]

J. Zhou and J. Shi, The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses,, J. Math. Anal. Appl., 405 (2013), 618.  doi: 10.1016/j.jmaa.2013.03.064.  Google Scholar

show all references

References:
[1]

M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes,, Appl. Math. Lett., 16 (2003), 1069.  doi: 10.1016/S0893-9659(03)90096-6.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations,, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons Ltd., (2003).  doi: 10.1002/0470871296.  Google Scholar

[3]

A. Casal, J. C. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion,, Differential Integral Equations, 7 (1994), 411.   Google Scholar

[4]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[5]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, Arch. Rational Mech. Anal., 52 (1973), 161.   Google Scholar

[6]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications,, J. Math. Anal. Appl., 91 (1983), 131.  doi: 10.1016/0022-247X(83)90098-7.  Google Scholar

[7]

E. N. Dancer, On positive solutions of some pairs of differential equations,, Trans. Amer. Math. Soc., 284 (1984), 729.  doi: 10.1090/S0002-9947-1984-0743741-4.  Google Scholar

[8]

E. N. Dancer and Y. Du, Competing species equations with diffusion, large interactions, and jumpting nonlinearities,, J. Differential Equaitons, 114 (1994), 434.  doi: 10.1006/jdeq.1994.1156.  Google Scholar

[9]

Y. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey mmodel,, Trans. Amer. Math. Soc., 349 (1997), 2443.  doi: 10.1090/S0002-9947-97-01842-4.  Google Scholar

[10]

Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model,, J. Differential Equaitons, 144 (1998), 390.  doi: 10.1006/jdeq.1997.3394.  Google Scholar

[11]

Y. Du, R. Peng and M. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model,, J. Differential Equaitons, 246 (2009), 3932.  doi: 10.1016/j.jde.2008.11.007.  Google Scholar

[12]

Y. Du and J. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment,, In Nonlinear dynamics and evolution equations, (2006), 95.   Google Scholar

[13]

Y. Du and J. Shi, A diffusive predator-prey model with a protection zone,, J. Differential Equaitons, 229 (2006), 63.  doi: 10.1016/j.jde.2006.01.013.  Google Scholar

[14]

B. Dubey, B. Das and J. Hussain, A predator-prey interaction model with self and cross-diffusion,, Ecological Modelling, 141 (2001), 67.  doi: 10.1016/S0304-3800(01)00255-1.  Google Scholar

[15]

C. Gui and Y. Lou, Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model,, Comm. Pure Appl. Math., 47 (1994), 1571.  doi: 10.1002/cpa.3160471203.  Google Scholar

[16]

C. S. Holling, Some characteristics of simple types of predation and parasitism,, The Canadian Entomologist, 91 (1959), 382.  doi: 10.4039/Ent91385-7.  Google Scholar

[17]

Y. Kan-on, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics,, Hiroshima Math. J., 23 (1993), 509.   Google Scholar

[18]

T. Kato, Perturbation Theory for Linear Operators,, Classics in Mathematics. Springer-Verlag, (1995).   Google Scholar

[19]

K. Kuto, Stability of steady-state solutions to a prey-predator system with cross-diffusion,, J. Differential Equations, 197 (2004), 293.  doi: 10.1016/j.jde.2003.10.016.  Google Scholar

[20]

K. Kuto, Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment,, Nonlinear Anal. Real World Appl., 10 (2009), 943.  doi: 10.1016/j.nonrwa.2007.11.015.  Google Scholar

[21]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion,, J. Differential Equations, 197 (2004), 315.  doi: 10.1016/j.jde.2003.08.003.  Google Scholar

[22]

K. Kuto and Y. Yamada, Positive solutions for Lotka-Volterra competition systems with large cross-diffusion,, Appl. Anal., 89 (2010), 1037.  doi: 10.1080/00036811003627534.  Google Scholar

[23]

P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species,, Biometrika, 47 (1960), 219.   Google Scholar

[24]

A. W. Leung, Nonlinear Systems of Partial Differential Equations,, World Scientific Publishing Co. Pte. Ltd., (2009).  doi: 10.1142/9789814277709.  Google Scholar

[25]

L. Li, Coexistence theorems of steady states for predator-prey interacting systems,, Trans. Amer. Math. Soc., 305 (1988), 143.  doi: 10.1090/S0002-9947-1988-0920151-1.  Google Scholar

[26]

Z. Lin and M. Pedersen, Coexistence of a general elliptic system in population dynamics,, Comput. Math. Appl., 48 (2004), 617.  doi: 10.1016/j.camwa.2003.01.016.  Google Scholar

[27]

J. López-Gómez, Positive periodic solutions of Lotka-Volterra reaction-diffusion systems,, Differential Integral Equations, 5 (1992), 55.   Google Scholar

[28]

J. López-Gómez and R. Pardo, Existence and uniqueness of coexistence states for the predator-prey model with diffusion: the scalar case,, Differential Integral Equations, 6 (1993), 1025.   Google Scholar

[29]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[30]

Y. Lou and W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach,, J. Differential Equations, 154 (1999), 157.  doi: 10.1006/jdeq.1998.3559.  Google Scholar

[31]

M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics,, Hiroshima Math. J., 11 (1981), 621.   Google Scholar

[32]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.  doi: 10.1007/BF00276035.  Google Scholar

[33]

K. Nakashima and Y. Yamada, Positive steady states for prey-predator models with cross-diffusion,, Adv. Differential Equations, 1 (1996), 1099.   Google Scholar

[34]

C. Neuhauser, Mathematical challenges in spatial ecology,, Notices Amer. Math. Soc., 48 (2001), 1304.   Google Scholar

[35]

K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone,, J. Differential Equations, 250 (2011), 3988.  doi: 10.1016/j.jde.2011.01.026.  Google Scholar

[36]

A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives,, Springer-Verlag, (2001).   Google Scholar

[37]

C. V. Pao, Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion,, Nonlinear Anal., 60 (2005), 1197.  doi: 10.1016/j.na.2004.10.008.  Google Scholar

[38]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Functional Analysis, 7 (1971), 487.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[39]

W. H. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients,, J. Math. Anal. Appl., 197 (1996), 558.  doi: 10.1006/jmaa.1996.0039.  Google Scholar

[40]

K. Ryu and I. Ahn, Positive coexistence of steady states for competitive interacting system with self-diffusion pressures,, Bull. Korean Math. Soc., 38 (2001), 643.   Google Scholar

[41]

K. Ryu and I. Ahn, Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics,, J. Math. Anal. Appl., 283 (2003), 46.  doi: 10.1016/S0022-247X(03)00162-8.  Google Scholar

[42]

K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions,, Discrete Contin. Dyn. Syst., 9 (2003), 1049.  doi: 10.3934/dcds.2003.9.1049.  Google Scholar

[43]

J. Shi, Persistence and bifurcation of degenerate solutions,, J. Funct. Anal., 169 (1999), 494.  doi: 10.1006/jfan.1999.3483.  Google Scholar

[44]

J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains,, J. Differential Equations, 246 (2009), 2788.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[45]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theoret. Biol., 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[46]

Y. Yamada, Positive solutions for Lotka-Volterra systems with cross-diffusion,, In Handbook of differential equations: stationary partial differential equations. Vol. VI, (2008), 411.  doi: 10.1016/S1874-5733(08)80023-X.  Google Scholar

[47]

C.-H. Zhang and X. P. Yan, Positive solutions bifurcating from zero solution in a Lotka-Volterra competitive system with cross-diffusion effects,, Appl. Math. J. Chinese Univ. Ser. B, 26 (2011), 342.  doi: 10.1007/s11766-011-2737-z.  Google Scholar

[48]

J. Zhou, Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes,, J. Math. Anal. Appl., 389 (2012), 1380.  doi: 10.1016/j.jmaa.2012.01.013.  Google Scholar

[49]

J. Zhou and J. Shi, The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses,, J. Math. Anal. Appl., 405 (2013), 618.  doi: 10.1016/j.jmaa.2013.03.064.  Google Scholar

[1]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[2]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

[3]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[4]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[5]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[6]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[7]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[8]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[9]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[10]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[11]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[12]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[13]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[14]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[15]

Hongyu Cheng, Shimin Wang. Response solutions to harmonic oscillators beyond multi–dimensional brjuno frequency. Communications on Pure & Applied Analysis, 2021, 20 (2) : 467-494. doi: 10.3934/cpaa.2020222

[16]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[17]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294

[18]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[19]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[20]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]