-
Previous Article
Estimates on the distance of inertial manifolds
- DCDS Home
- This Issue
-
Next Article
Obituary
Asymptotic behaviour of a non-autonomous Lorenz-84 system
1. | Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080-Sevilla |
2. | Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla |
References:
[1] |
V. A. Boichenko and G. A. Leonov, The Hausdorff dimension of attractors of the Lorenz system, Differentsial'nye Uravneniya, 25 (1989), 1999-2000. |
[2] |
V. A. Boichenko, G. A. Leonov and V. Reitmann, Dimension Theory for Ordinary Differential Equations, Vieweg-Teubner, Wiesbaden, 2005. |
[3] |
H. Broer, C. Simó and R. Vitolo, Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing, Nonlinearity, 15 (2002), 1205-1267.
doi: 10.1088/0951-7715/15/4/312. |
[4] |
T. Caraballo, J. A. Langa and J. C. Robinson, Attractors for differential equations with variable delays, Journal of Mathematical Analysis and Applications, 260 (2001), 421-438.
doi: 10.1006/jmaa.2000.7464. |
[5] |
T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Analysis, 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111. |
[6] |
T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for non-autonomous 2D Navier-Stokes equations in unbounded domains, C. R. Math. Acad. Sci. Paris, 342 (2006), 263-268.
doi: 10.1016/j.crma.2005.12.015. |
[7] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[8] |
V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333. |
[9] |
V. V. Chepyzhov and M. I. Vishik, Attractors of periodic processes and estimates of their dimension, Mathematical Notes, 57 (1995), 127-140.
doi: 10.1007/BF02309145. |
[10] |
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Colloquium Publications, 49, 2002.
doi: 10.1070/RM2013v068n02ABEH004832. |
[11] |
H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Differential Equations, 9 (1997), 341-397.
doi: 10.1007/BF02219225. |
[12] |
A. Haraux, Attractors of asymptotically compact processes and applications to nonlinear partial differential equations, Comm. Partial Differential Equations, 13 (1988), 1383-1414.
doi: 10.1080/03605308808820580. |
[13] |
W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, 1941. |
[14] |
P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, Province, RI, 2011. |
[15] |
P. E. Kloeden and H. M. Rodrigues, Dynamics of a class of ODEs more general than almost periodic, Nonlinear Analysis, 74 (2011), 2695-2719.
doi: 10.1016/j.na.2010.12.025. |
[16] |
P. E. Kloeden and B. Schmalfuss, Nonautonomous systems, cocycle attractors and variable time-step discretization, Numer. Algorithms, 14 (1997), 141-152.
doi: 10.1023/A:1019156812251. |
[17] |
P. E. Kloeden and B. Schmalfuss, Asymptotic behaviour of non-autonomous difference inclusions, Systems Control Lett., 33 (1998), 275-280.
doi: 10.1016/S0167-6911(97)00107-2. |
[18] |
P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations, Dynamics of Continuous, Discrete and Impulsive Systems, 4 (1998), 211-226. |
[19] |
G. A. Leonov and V. A. Boichenko, Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors, Acta Appl. Math., 26 (1992), 1-60.
doi: 10.1007/BF00046607. |
[20] |
G. A. Leonov, Formulas for the Lyapunov dimension of Hénon and Lorenz attractors, Algebra Anal., 13 (2001), 155-170. |
[21] |
G. A. Leonov, Strange Attractors and Classical Stability Theory, St. Petersburg Univ. Press, St. Petersburg, 2008. |
[22] |
G. A. Leonov, V. Reitmann and A. S. Slepukhin, Upper estimates for the Hausdorff dimension of negatively invariant sets of local cocycles, Doklady Mathematics, 84 (2011), 551-554.
doi: 10.1134/S1064562411050103. |
[23] |
E. N. Lorenz, Deterministic nonperiodic flow, Journal of the atmospheric sciences, 20 (1963), 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. |
[24] |
E. N. Lorenz, Irregularity: A fundamental property of the atmosphere, Tellus, 36A (1984), 98-110.
doi: 10.1111/j.1600-0870.1984.tb00230.x. |
[25] |
E. N. Lorenz, Can chaos and intransitivity lead to interannual variability?, Tellus, 42A (1990), 378-389.
doi: 10.1034/j.1600-0870.1990.t01-2-00005.x. |
[26] |
C. Masoller, A. C. Sicardi Schifino and L. Romanelli, Regular and chaotic behavior in the new Lorenz system, Physics Letters A, 167 (1992), 185-190.
doi: 10.1016/0375-9601(92)90226-C. |
[27] |
C. Masoller, A. C. Schifino and L. Romanelli, Characterization of strange attractors of Lorenz model of general circulation of the atmosphere, Chaos, Solitons & Fractals, 6 (1995), 357-366.
doi: 10.1016/0960-0779(95)80041-E. |
[28] |
B. Schmalfuss, Attractors for the non-autonomous dynamical systems, in Proceedings of Equadiff 99 (eds. B. Fiedler, K. Gröger and J. Sprekels), Berlin, Singapore World Scientific, Singapore, 2000, 684-689. |
[29] |
A. Shil'nikov, G. Nicolis and C. Nicolis, Bifurcation and predictability analysis of a low-order atmospheric circulation model, Int. J. Bifur. Chaos, 5 (1995), 1701-1711.
doi: 10.1142/S0218127495001253. |
[30] |
A. Sicardi and C. Masoller, Analytical study of the codimension two bifurcation of the new Lorenz system, Instabilities and Nonequilibrium Structures, V (1996), 345-348.
doi: 10.1007/978-94-009-0239-8_32. |
[31] |
H. L. Swinney and J. P. Gollub, Characterization of hydrodynamic strange attractors, Physica D, 18 (1986), 448-454.
doi: 10.1016/0167-2789(86)90213-7. |
[32] |
R. Temam, Infinite-Dimensional Dynamical System in Mechanics and Physics, Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8. |
show all references
References:
[1] |
V. A. Boichenko and G. A. Leonov, The Hausdorff dimension of attractors of the Lorenz system, Differentsial'nye Uravneniya, 25 (1989), 1999-2000. |
[2] |
V. A. Boichenko, G. A. Leonov and V. Reitmann, Dimension Theory for Ordinary Differential Equations, Vieweg-Teubner, Wiesbaden, 2005. |
[3] |
H. Broer, C. Simó and R. Vitolo, Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing, Nonlinearity, 15 (2002), 1205-1267.
doi: 10.1088/0951-7715/15/4/312. |
[4] |
T. Caraballo, J. A. Langa and J. C. Robinson, Attractors for differential equations with variable delays, Journal of Mathematical Analysis and Applications, 260 (2001), 421-438.
doi: 10.1006/jmaa.2000.7464. |
[5] |
T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Analysis, 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111. |
[6] |
T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for non-autonomous 2D Navier-Stokes equations in unbounded domains, C. R. Math. Acad. Sci. Paris, 342 (2006), 263-268.
doi: 10.1016/j.crma.2005.12.015. |
[7] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[8] |
V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333. |
[9] |
V. V. Chepyzhov and M. I. Vishik, Attractors of periodic processes and estimates of their dimension, Mathematical Notes, 57 (1995), 127-140.
doi: 10.1007/BF02309145. |
[10] |
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Colloquium Publications, 49, 2002.
doi: 10.1070/RM2013v068n02ABEH004832. |
[11] |
H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Differential Equations, 9 (1997), 341-397.
doi: 10.1007/BF02219225. |
[12] |
A. Haraux, Attractors of asymptotically compact processes and applications to nonlinear partial differential equations, Comm. Partial Differential Equations, 13 (1988), 1383-1414.
doi: 10.1080/03605308808820580. |
[13] |
W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, 1941. |
[14] |
P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, Province, RI, 2011. |
[15] |
P. E. Kloeden and H. M. Rodrigues, Dynamics of a class of ODEs more general than almost periodic, Nonlinear Analysis, 74 (2011), 2695-2719.
doi: 10.1016/j.na.2010.12.025. |
[16] |
P. E. Kloeden and B. Schmalfuss, Nonautonomous systems, cocycle attractors and variable time-step discretization, Numer. Algorithms, 14 (1997), 141-152.
doi: 10.1023/A:1019156812251. |
[17] |
P. E. Kloeden and B. Schmalfuss, Asymptotic behaviour of non-autonomous difference inclusions, Systems Control Lett., 33 (1998), 275-280.
doi: 10.1016/S0167-6911(97)00107-2. |
[18] |
P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations, Dynamics of Continuous, Discrete and Impulsive Systems, 4 (1998), 211-226. |
[19] |
G. A. Leonov and V. A. Boichenko, Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors, Acta Appl. Math., 26 (1992), 1-60.
doi: 10.1007/BF00046607. |
[20] |
G. A. Leonov, Formulas for the Lyapunov dimension of Hénon and Lorenz attractors, Algebra Anal., 13 (2001), 155-170. |
[21] |
G. A. Leonov, Strange Attractors and Classical Stability Theory, St. Petersburg Univ. Press, St. Petersburg, 2008. |
[22] |
G. A. Leonov, V. Reitmann and A. S. Slepukhin, Upper estimates for the Hausdorff dimension of negatively invariant sets of local cocycles, Doklady Mathematics, 84 (2011), 551-554.
doi: 10.1134/S1064562411050103. |
[23] |
E. N. Lorenz, Deterministic nonperiodic flow, Journal of the atmospheric sciences, 20 (1963), 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. |
[24] |
E. N. Lorenz, Irregularity: A fundamental property of the atmosphere, Tellus, 36A (1984), 98-110.
doi: 10.1111/j.1600-0870.1984.tb00230.x. |
[25] |
E. N. Lorenz, Can chaos and intransitivity lead to interannual variability?, Tellus, 42A (1990), 378-389.
doi: 10.1034/j.1600-0870.1990.t01-2-00005.x. |
[26] |
C. Masoller, A. C. Sicardi Schifino and L. Romanelli, Regular and chaotic behavior in the new Lorenz system, Physics Letters A, 167 (1992), 185-190.
doi: 10.1016/0375-9601(92)90226-C. |
[27] |
C. Masoller, A. C. Schifino and L. Romanelli, Characterization of strange attractors of Lorenz model of general circulation of the atmosphere, Chaos, Solitons & Fractals, 6 (1995), 357-366.
doi: 10.1016/0960-0779(95)80041-E. |
[28] |
B. Schmalfuss, Attractors for the non-autonomous dynamical systems, in Proceedings of Equadiff 99 (eds. B. Fiedler, K. Gröger and J. Sprekels), Berlin, Singapore World Scientific, Singapore, 2000, 684-689. |
[29] |
A. Shil'nikov, G. Nicolis and C. Nicolis, Bifurcation and predictability analysis of a low-order atmospheric circulation model, Int. J. Bifur. Chaos, 5 (1995), 1701-1711.
doi: 10.1142/S0218127495001253. |
[30] |
A. Sicardi and C. Masoller, Analytical study of the codimension two bifurcation of the new Lorenz system, Instabilities and Nonequilibrium Structures, V (1996), 345-348.
doi: 10.1007/978-94-009-0239-8_32. |
[31] |
H. L. Swinney and J. P. Gollub, Characterization of hydrodynamic strange attractors, Physica D, 18 (1986), 448-454.
doi: 10.1016/0167-2789(86)90213-7. |
[32] |
R. Temam, Infinite-Dimensional Dynamical System in Mechanics and Physics, Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8. |
[1] |
Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639 |
[2] |
Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195 |
[3] |
T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037 |
[4] |
Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194 |
[5] |
Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743 |
[6] |
Xiaolin Jia, Caidi Zhao, Juan Cao. Uniform attractor of the non-autonomous discrete Selkov model. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 229-248. doi: 10.3934/dcds.2014.34.229 |
[7] |
Xueli Song, Jianhua Wu. Non-autonomous 2D Newton-Boussinesq equation with oscillating external forces and its uniform attractor. Evolution Equations and Control Theory, 2022, 11 (1) : 41-65. doi: 10.3934/eect.2020102 |
[8] |
Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210 |
[9] |
Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022 |
[10] |
Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887 |
[11] |
Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain. Evolution Equations and Control Theory, 2020, 9 (3) : 581-604. doi: 10.3934/eect.2020025 |
[12] |
Ling Xu, Jianhua Huang, Qiaozhen Ma. Random exponential attractor for stochastic non-autonomous suspension bridge equation with additive white noise. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021318 |
[13] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809 |
[14] |
Cristina Lizana, Leonardo Mora. Lower bounds for the Hausdorff dimension of the geometric Lorenz attractor: The homoclinic case. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 699-709. doi: 10.3934/dcds.2008.22.699 |
[15] |
Alexandre N. Carvalho, José A. Langa, James C. Robinson. Forwards dynamics of non-autonomous dynamical systems: Driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1997-2013. doi: 10.3934/cpaa.2020088 |
[16] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281 |
[17] |
José A. Langa, James C. Robinson, Aníbal Rodríguez-Bernal, A. Suárez, A. Vidal-López. Existence and nonexistence of unbounded forwards attractor for a class of non-autonomous reaction diffusion equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 483-497. doi: 10.3934/dcds.2007.18.483 |
[18] |
V. V. Chepyzhov, M. I. Vishik, W. L. Wendland. On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 27-38. doi: 10.3934/dcds.2005.12.27 |
[19] |
T. Tachim Medjo. Non-autonomous 3D primitive equations with oscillating external force and its global attractor. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 265-291. doi: 10.3934/dcds.2012.32.265 |
[20] |
Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]