October  2014, 34(10): 3901-3920. doi: 10.3934/dcds.2014.34.3901

Asymptotic behaviour of a non-autonomous Lorenz-84 system

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080-Sevilla

2. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla

Received  March 2013 Revised  April 2013 Published  April 2014

The so called Lorenz-84 model has been used in climatological studies, for example by coupling it with a low-dimensional model for ocean dynamics. The behaviour of this model has been studied extensively since its introduction by Lorenz in 1984. In this paper we study the asymptotic behaviour of a non-autonomous Lorenz-84 version with several types of non-autonomous features. We prove the existence of pullback and uniform attractors for the process associated to this model. In particular we consider that the non-autonomous forcing terms are more general than almost periodic. Finally, we estimate the Hausdorff dimension of the pullback attractor. We illustrate some examples of pullback attractors by numerical simulations.
Citation: María Anguiano, Tomás Caraballo. Asymptotic behaviour of a non-autonomous Lorenz-84 system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 3901-3920. doi: 10.3934/dcds.2014.34.3901
References:
[1]

V. A. Boichenko and G. A. Leonov, The Hausdorff dimension of attractors of the Lorenz system,, Differentsial'nye Uravneniya, 25 (1989), 1999. Google Scholar

[2]

V. A. Boichenko, G. A. Leonov and V. Reitmann, Dimension Theory for Ordinary Differential Equations,, Vieweg-Teubner, (2005). Google Scholar

[3]

H. Broer, C. Simó and R. Vitolo, Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing,, Nonlinearity, 15 (2002), 1205. doi: 10.1088/0951-7715/15/4/312. Google Scholar

[4]

T. Caraballo, J. A. Langa and J. C. Robinson, Attractors for differential equations with variable delays,, Journal of Mathematical Analysis and Applications, 260 (2001), 421. doi: 10.1006/jmaa.2000.7464. Google Scholar

[5]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, Nonlinear Analysis, 64 (2006), 484. doi: 10.1016/j.na.2005.03.111. Google Scholar

[6]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for non-autonomous 2D Navier-Stokes equations in unbounded domains,, C. R. Math. Acad. Sci. Paris, 342 (2006), 263. doi: 10.1016/j.crma.2005.12.015. Google Scholar

[7]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, Applied Mathematical Sciences, (2013). doi: 10.1007/978-1-4614-4581-4. Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension,, J. Math. Pures Appl., 73 (1994), 279. Google Scholar

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors of periodic processes and estimates of their dimension,, Mathematical Notes, 57 (1995), 127. doi: 10.1007/BF02309145. Google Scholar

[10]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, American Mathematical Society, (2002). doi: 10.1070/RM2013v068n02ABEH004832. Google Scholar

[11]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dyn. Differential Equations, 9 (1997), 341. doi: 10.1007/BF02219225. Google Scholar

[12]

A. Haraux, Attractors of asymptotically compact processes and applications to nonlinear partial differential equations,, Comm. Partial Differential Equations, 13 (1988), 1383. doi: 10.1080/03605308808820580. Google Scholar

[13]

W. Hurewicz and H. Wallman, Dimension Theory,, Princeton University Press, (1941). Google Scholar

[14]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, Mathematical Surveys and Monographs, (2011). Google Scholar

[15]

P. E. Kloeden and H. M. Rodrigues, Dynamics of a class of ODEs more general than almost periodic,, Nonlinear Analysis, 74 (2011), 2695. doi: 10.1016/j.na.2010.12.025. Google Scholar

[16]

P. E. Kloeden and B. Schmalfuss, Nonautonomous systems, cocycle attractors and variable time-step discretization,, Numer. Algorithms, 14 (1997), 141. doi: 10.1023/A:1019156812251. Google Scholar

[17]

P. E. Kloeden and B. Schmalfuss, Asymptotic behaviour of non-autonomous difference inclusions,, Systems Control Lett., 33 (1998), 275. doi: 10.1016/S0167-6911(97)00107-2. Google Scholar

[18]

P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations,, Dynamics of Continuous, 4 (1998), 211. Google Scholar

[19]

G. A. Leonov and V. A. Boichenko, Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors,, Acta Appl. Math., 26 (1992), 1. doi: 10.1007/BF00046607. Google Scholar

[20]

G. A. Leonov, Formulas for the Lyapunov dimension of Hénon and Lorenz attractors,, Algebra Anal., 13 (2001), 155. Google Scholar

[21]

G. A. Leonov, Strange Attractors and Classical Stability Theory,, St. Petersburg Univ. Press, (2008). Google Scholar

[22]

G. A. Leonov, V. Reitmann and A. S. Slepukhin, Upper estimates for the Hausdorff dimension of negatively invariant sets of local cocycles,, Doklady Mathematics, 84 (2011), 551. doi: 10.1134/S1064562411050103. Google Scholar

[23]

E. N. Lorenz, Deterministic nonperiodic flow,, Journal of the atmospheric sciences, 20 (1963), 130. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. Google Scholar

[24]

E. N. Lorenz, Irregularity: A fundamental property of the atmosphere,, Tellus, 36A (1984), 98. doi: 10.1111/j.1600-0870.1984.tb00230.x. Google Scholar

[25]

E. N. Lorenz, Can chaos and intransitivity lead to interannual variability?,, Tellus, 42A (1990), 378. doi: 10.1034/j.1600-0870.1990.t01-2-00005.x. Google Scholar

[26]

C. Masoller, A. C. Sicardi Schifino and L. Romanelli, Regular and chaotic behavior in the new Lorenz system,, Physics Letters A, 167 (1992), 185. doi: 10.1016/0375-9601(92)90226-C. Google Scholar

[27]

C. Masoller, A. C. Schifino and L. Romanelli, Characterization of strange attractors of Lorenz model of general circulation of the atmosphere,, Chaos, 6 (1995), 357. doi: 10.1016/0960-0779(95)80041-E. Google Scholar

[28]

B. Schmalfuss, Attractors for the non-autonomous dynamical systems,, in Proceedings of Equadiff 99 (eds. B. Fiedler, (2000), 684. Google Scholar

[29]

A. Shil'nikov, G. Nicolis and C. Nicolis, Bifurcation and predictability analysis of a low-order atmospheric circulation model,, Int. J. Bifur. Chaos, 5 (1995), 1701. doi: 10.1142/S0218127495001253. Google Scholar

[30]

A. Sicardi and C. Masoller, Analytical study of the codimension two bifurcation of the new Lorenz system,, Instabilities and Nonequilibrium Structures, V (1996), 345. doi: 10.1007/978-94-009-0239-8_32. Google Scholar

[31]

H. L. Swinney and J. P. Gollub, Characterization of hydrodynamic strange attractors,, Physica D, 18 (1986), 448. doi: 10.1016/0167-2789(86)90213-7. Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical System in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

show all references

References:
[1]

V. A. Boichenko and G. A. Leonov, The Hausdorff dimension of attractors of the Lorenz system,, Differentsial'nye Uravneniya, 25 (1989), 1999. Google Scholar

[2]

V. A. Boichenko, G. A. Leonov and V. Reitmann, Dimension Theory for Ordinary Differential Equations,, Vieweg-Teubner, (2005). Google Scholar

[3]

H. Broer, C. Simó and R. Vitolo, Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing,, Nonlinearity, 15 (2002), 1205. doi: 10.1088/0951-7715/15/4/312. Google Scholar

[4]

T. Caraballo, J. A. Langa and J. C. Robinson, Attractors for differential equations with variable delays,, Journal of Mathematical Analysis and Applications, 260 (2001), 421. doi: 10.1006/jmaa.2000.7464. Google Scholar

[5]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, Nonlinear Analysis, 64 (2006), 484. doi: 10.1016/j.na.2005.03.111. Google Scholar

[6]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for non-autonomous 2D Navier-Stokes equations in unbounded domains,, C. R. Math. Acad. Sci. Paris, 342 (2006), 263. doi: 10.1016/j.crma.2005.12.015. Google Scholar

[7]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, Applied Mathematical Sciences, (2013). doi: 10.1007/978-1-4614-4581-4. Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension,, J. Math. Pures Appl., 73 (1994), 279. Google Scholar

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors of periodic processes and estimates of their dimension,, Mathematical Notes, 57 (1995), 127. doi: 10.1007/BF02309145. Google Scholar

[10]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, American Mathematical Society, (2002). doi: 10.1070/RM2013v068n02ABEH004832. Google Scholar

[11]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dyn. Differential Equations, 9 (1997), 341. doi: 10.1007/BF02219225. Google Scholar

[12]

A. Haraux, Attractors of asymptotically compact processes and applications to nonlinear partial differential equations,, Comm. Partial Differential Equations, 13 (1988), 1383. doi: 10.1080/03605308808820580. Google Scholar

[13]

W. Hurewicz and H. Wallman, Dimension Theory,, Princeton University Press, (1941). Google Scholar

[14]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, Mathematical Surveys and Monographs, (2011). Google Scholar

[15]

P. E. Kloeden and H. M. Rodrigues, Dynamics of a class of ODEs more general than almost periodic,, Nonlinear Analysis, 74 (2011), 2695. doi: 10.1016/j.na.2010.12.025. Google Scholar

[16]

P. E. Kloeden and B. Schmalfuss, Nonautonomous systems, cocycle attractors and variable time-step discretization,, Numer. Algorithms, 14 (1997), 141. doi: 10.1023/A:1019156812251. Google Scholar

[17]

P. E. Kloeden and B. Schmalfuss, Asymptotic behaviour of non-autonomous difference inclusions,, Systems Control Lett., 33 (1998), 275. doi: 10.1016/S0167-6911(97)00107-2. Google Scholar

[18]

P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations,, Dynamics of Continuous, 4 (1998), 211. Google Scholar

[19]

G. A. Leonov and V. A. Boichenko, Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors,, Acta Appl. Math., 26 (1992), 1. doi: 10.1007/BF00046607. Google Scholar

[20]

G. A. Leonov, Formulas for the Lyapunov dimension of Hénon and Lorenz attractors,, Algebra Anal., 13 (2001), 155. Google Scholar

[21]

G. A. Leonov, Strange Attractors and Classical Stability Theory,, St. Petersburg Univ. Press, (2008). Google Scholar

[22]

G. A. Leonov, V. Reitmann and A. S. Slepukhin, Upper estimates for the Hausdorff dimension of negatively invariant sets of local cocycles,, Doklady Mathematics, 84 (2011), 551. doi: 10.1134/S1064562411050103. Google Scholar

[23]

E. N. Lorenz, Deterministic nonperiodic flow,, Journal of the atmospheric sciences, 20 (1963), 130. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. Google Scholar

[24]

E. N. Lorenz, Irregularity: A fundamental property of the atmosphere,, Tellus, 36A (1984), 98. doi: 10.1111/j.1600-0870.1984.tb00230.x. Google Scholar

[25]

E. N. Lorenz, Can chaos and intransitivity lead to interannual variability?,, Tellus, 42A (1990), 378. doi: 10.1034/j.1600-0870.1990.t01-2-00005.x. Google Scholar

[26]

C. Masoller, A. C. Sicardi Schifino and L. Romanelli, Regular and chaotic behavior in the new Lorenz system,, Physics Letters A, 167 (1992), 185. doi: 10.1016/0375-9601(92)90226-C. Google Scholar

[27]

C. Masoller, A. C. Schifino and L. Romanelli, Characterization of strange attractors of Lorenz model of general circulation of the atmosphere,, Chaos, 6 (1995), 357. doi: 10.1016/0960-0779(95)80041-E. Google Scholar

[28]

B. Schmalfuss, Attractors for the non-autonomous dynamical systems,, in Proceedings of Equadiff 99 (eds. B. Fiedler, (2000), 684. Google Scholar

[29]

A. Shil'nikov, G. Nicolis and C. Nicolis, Bifurcation and predictability analysis of a low-order atmospheric circulation model,, Int. J. Bifur. Chaos, 5 (1995), 1701. doi: 10.1142/S0218127495001253. Google Scholar

[30]

A. Sicardi and C. Masoller, Analytical study of the codimension two bifurcation of the new Lorenz system,, Instabilities and Nonequilibrium Structures, V (1996), 345. doi: 10.1007/978-94-009-0239-8_32. Google Scholar

[31]

H. L. Swinney and J. P. Gollub, Characterization of hydrodynamic strange attractors,, Physica D, 18 (1986), 448. doi: 10.1016/0167-2789(86)90213-7. Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical System in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[1]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[2]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[3]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[4]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[5]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[6]

Xiaolin Jia, Caidi Zhao, Juan Cao. Uniform attractor of the non-autonomous discrete Selkov model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 229-248. doi: 10.3934/dcds.2014.34.229

[7]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[8]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[9]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[10]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[11]

Cristina Lizana, Leonardo Mora. Lower bounds for the Hausdorff dimension of the geometric Lorenz attractor: The homoclinic case. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 699-709. doi: 10.3934/dcds.2008.22.699

[12]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[13]

José A. Langa, James C. Robinson, Aníbal Rodríguez-Bernal, A. Suárez, A. Vidal-López. Existence and nonexistence of unbounded forwards attractor for a class of non-autonomous reaction diffusion equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 483-497. doi: 10.3934/dcds.2007.18.483

[14]

V. V. Chepyzhov, M. I. Vishik, W. L. Wendland. On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 27-38. doi: 10.3934/dcds.2005.12.27

[15]

T. Tachim Medjo. Non-autonomous 3D primitive equations with oscillating external force and its global attractor. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 265-291. doi: 10.3934/dcds.2012.32.265

[16]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[17]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[18]

Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801

[19]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure & Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[20]

Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]