October  2014, 34(10): 3921-3944. doi: 10.3934/dcds.2014.34.3921

Estimates on the distance of inertial manifolds

1. 

Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain, Spain

Received  March 2013 Revised  May 2013 Published  April 2014

In this paper we obtain estimates on the distance of inertial manifolds for dynamical systems generated by evolutionary parabolic type equations. We consider the situation where the systems are defined in different phase spaces and we estimate the distance in terms of the distance of the resolvent operators of the corresponding elliptic operators and the distance of the nonlinearities of the equations.
Citation: José M. Arrieta, Esperanza Santamaría. Estimates on the distance of inertial manifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 3921-3944. doi: 10.3934/dcds.2014.34.3921
References:
[1]

J. M. Arrieta and A. N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain,, Journal of Differential Equations, 199 (2004), 143. doi: 10.1016/j.jde.2003.09.004. Google Scholar

[2]

J. M. Arrieta, A. N. Carvalho and G. Lozada-Cruz, Dynamics in dumbbell domains I. continuity of the set of equilibria,, Journal of Differential Equations, 231 (2006). doi: 10.1016/j.jde.2006.06.002. Google Scholar

[3]

J. M. Arrieta, A. N. Carvalho and G. Lozada-Cruz, Dynamics in Dumbbell Domains III. Continuity of attractors,, Journal of Differential Equations, 247 (2009), 225. doi: 10.1016/j.jde.2008.12.014. Google Scholar

[4]

J. M. Arrieta and E. Santamaría, Distance of attractors for thin domains,, in preparation., (). Google Scholar

[5]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, Studies in Mathematics and its Applications, (1992). Google Scholar

[6]

P. W. Bates, K. Lu and C. Zeng, Existence and persistence of invariant manifolds for semiflows in banach space,, Mem. Am. Math. Soc., 135 (1998). doi: 10.1090/memo/0645. Google Scholar

[7]

A. N. Carvalho, J. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical-Systems,, Applied Mathematical Sciences, (2012). doi: 10.1007/978-1-4614-4581-4. Google Scholar

[8]

A. N. Carvalho and S. Piskarev, A general approximation scheme for attractors of abstract parabolic problems,, Numerical Functional Analysis and Optimization, 27 (2006), 785. doi: 10.1080/01630560600882723. Google Scholar

[9]

S.-N. Chow, X.-B. Lin and K. Lu, Smooth invariant foliations in infinite dimensional spaces,, Journal of Differential Equations, 94 (1991), 266. doi: 10.1016/0022-0396(91)90093-O. Google Scholar

[10]

S.-N. Chow, K. Lu and G. R. Sell, Smoothness of inertial manifolds,, Journal of Mathematical Analysis and Applications, 169 (1992), 283. doi: 10.1016/0022-247X(92)90115-T. Google Scholar

[11]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems,, London Mathematical Society Lecture Note Series, (2000). doi: 10.1017/CBO9780511526404. Google Scholar

[12]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, American Mathematical Society, (1988). Google Scholar

[13]

J. K. Hale and G. Raugel, Reaction-Diffusion Equation on Thin Domains,, J. Math. Pures et Appl., 71 (1992), 33. Google Scholar

[14]

D. B. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981). Google Scholar

[15]

D. A. Jones, A. M. Stuart and E. S. Titi, Persistence of invariant sets for dissipative evolution equations,, Journal of Mathematical Analysis and Applications, 219 (1998), 479. doi: 10.1006/jmaa.1997.5847. Google Scholar

[16]

P. S. Ngiamsunthorn, Invariant manifolds for parabolic equations under perturbation of the domain,, Nonlinear Analysis TMA, 80 (2013), 23. doi: 10.1016/j.na.2012.12.001. Google Scholar

[17]

G. Raugel, Dynamics of partial differential equations on thin domains,, in Dynamical Systems (Montecatini Terme, (1994), 208. doi: 10.1007/BFb0095241. Google Scholar

[18]

J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,, Cambridge Texts in Applied Mathematics. Cambridge University Press, (2001). Google Scholar

[19]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Applied Mathematical Sciences, (2002). Google Scholar

[20]

N. Varchon, Domain perturbation and invariant manifolds,, J. Evol. Equ., 12 (2012), 547. doi: 10.1007/s00028-012-0144-4. Google Scholar

show all references

References:
[1]

J. M. Arrieta and A. N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain,, Journal of Differential Equations, 199 (2004), 143. doi: 10.1016/j.jde.2003.09.004. Google Scholar

[2]

J. M. Arrieta, A. N. Carvalho and G. Lozada-Cruz, Dynamics in dumbbell domains I. continuity of the set of equilibria,, Journal of Differential Equations, 231 (2006). doi: 10.1016/j.jde.2006.06.002. Google Scholar

[3]

J. M. Arrieta, A. N. Carvalho and G. Lozada-Cruz, Dynamics in Dumbbell Domains III. Continuity of attractors,, Journal of Differential Equations, 247 (2009), 225. doi: 10.1016/j.jde.2008.12.014. Google Scholar

[4]

J. M. Arrieta and E. Santamaría, Distance of attractors for thin domains,, in preparation., (). Google Scholar

[5]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, Studies in Mathematics and its Applications, (1992). Google Scholar

[6]

P. W. Bates, K. Lu and C. Zeng, Existence and persistence of invariant manifolds for semiflows in banach space,, Mem. Am. Math. Soc., 135 (1998). doi: 10.1090/memo/0645. Google Scholar

[7]

A. N. Carvalho, J. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical-Systems,, Applied Mathematical Sciences, (2012). doi: 10.1007/978-1-4614-4581-4. Google Scholar

[8]

A. N. Carvalho and S. Piskarev, A general approximation scheme for attractors of abstract parabolic problems,, Numerical Functional Analysis and Optimization, 27 (2006), 785. doi: 10.1080/01630560600882723. Google Scholar

[9]

S.-N. Chow, X.-B. Lin and K. Lu, Smooth invariant foliations in infinite dimensional spaces,, Journal of Differential Equations, 94 (1991), 266. doi: 10.1016/0022-0396(91)90093-O. Google Scholar

[10]

S.-N. Chow, K. Lu and G. R. Sell, Smoothness of inertial manifolds,, Journal of Mathematical Analysis and Applications, 169 (1992), 283. doi: 10.1016/0022-247X(92)90115-T. Google Scholar

[11]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems,, London Mathematical Society Lecture Note Series, (2000). doi: 10.1017/CBO9780511526404. Google Scholar

[12]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, American Mathematical Society, (1988). Google Scholar

[13]

J. K. Hale and G. Raugel, Reaction-Diffusion Equation on Thin Domains,, J. Math. Pures et Appl., 71 (1992), 33. Google Scholar

[14]

D. B. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981). Google Scholar

[15]

D. A. Jones, A. M. Stuart and E. S. Titi, Persistence of invariant sets for dissipative evolution equations,, Journal of Mathematical Analysis and Applications, 219 (1998), 479. doi: 10.1006/jmaa.1997.5847. Google Scholar

[16]

P. S. Ngiamsunthorn, Invariant manifolds for parabolic equations under perturbation of the domain,, Nonlinear Analysis TMA, 80 (2013), 23. doi: 10.1016/j.na.2012.12.001. Google Scholar

[17]

G. Raugel, Dynamics of partial differential equations on thin domains,, in Dynamical Systems (Montecatini Terme, (1994), 208. doi: 10.1007/BFb0095241. Google Scholar

[18]

J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,, Cambridge Texts in Applied Mathematics. Cambridge University Press, (2001). Google Scholar

[19]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Applied Mathematical Sciences, (2002). Google Scholar

[20]

N. Varchon, Domain perturbation and invariant manifolds,, J. Evol. Equ., 12 (2012), 547. doi: 10.1007/s00028-012-0144-4. Google Scholar

[1]

A. V. Rezounenko. Inertial manifolds with delay for retarded semilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 829-840. doi: 10.3934/dcds.2000.6.829

[2]

Vladimir V. Chepyzhov, Anna Kostianko, Sergey Zelik. Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1115-1142. doi: 10.3934/dcdsb.2019009

[3]

Cung The Anh, Le Van Hieu, Nguyen Thieu Huy. Inertial manifolds for a class of non-autonomous semilinear parabolic equations with finite delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 483-503. doi: 10.3934/dcds.2013.33.483

[4]

Marcone C. Pereira, Ricardo P. Silva. Error estimates for a Neumann problem in highly oscillating thin domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 803-817. doi: 10.3934/dcds.2013.33.803

[5]

Wolf-Jürgen Beyn, Sergey Piskarev. Shadowing for discrete approximations of abstract parabolic equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 19-42. doi: 10.3934/dcdsb.2008.10.19

[6]

Norbert Koksch, Stefan Siegmund. Feedback control via inertial manifolds for nonautonomous evolution equations. Communications on Pure & Applied Analysis, 2011, 10 (3) : 917-936. doi: 10.3934/cpaa.2011.10.917

[7]

James C. Robinson. Computing inertial manifolds. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 815-833. doi: 10.3934/dcds.2002.8.815

[8]

James C. Robinson. Inertial manifolds with and without delay. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 813-824. doi: 10.3934/dcds.1999.5.813

[9]

Bouthaina Abdelhedi. Existence of periodic solutions of a system of damped wave equations in thin domains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 767-800. doi: 10.3934/dcds.2008.20.767

[10]

Ricardo Rosa. Approximate inertial manifolds of exponential order. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 421-448. doi: 10.3934/dcds.1995.1.421

[11]

A. Debussche, R. Temam. Some new generalizations of inertial manifolds. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 543-558. doi: 10.3934/dcds.1996.2.543

[12]

Oscar P. Manley. Some physical considerations attendant to the approximate inertial manifolds for Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 585-593. doi: 10.3934/dcds.1996.2.585

[13]

Anna Kostianko, Sergey Zelik. Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2069-2094. doi: 10.3934/cpaa.2015.14.2069

[14]

Jesenko Vukadinovic. Global dissipativity and inertial manifolds for diffusive burgers equations with low-wavenumber instability. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 327-341. doi: 10.3934/dcds.2011.29.327

[15]

Hans Wilhelm Alt. An abstract existence theorem for parabolic systems. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2079-2123. doi: 10.3934/cpaa.2012.11.2079

[16]

Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 187-208. doi: 10.3934/dcds.2018009

[17]

Dingshi Li, Xiaohu Wang. Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 449-465. doi: 10.3934/dcdsb.2018181

[18]

Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3717-3747. doi: 10.3934/dcds.2019151

[19]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[20]

Peter Brune, Björn Schmalfuss. Inertial manifolds for stochastic pde with dynamical boundary conditions. Communications on Pure & Applied Analysis, 2011, 10 (3) : 831-846. doi: 10.3934/cpaa.2011.10.831

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]