October  2014, 34(10): 4019-4037. doi: 10.3934/dcds.2014.34.4019

Asymptotic behaviour of a logistic lattice system

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla

2. 

Department d'Economia Aplicada, Facultat d'Economia, Universitat de València, Campus del Tarongers s/n, 46022-València

3. 

Centro de Investigación Operativa, Universidad Miguel Hernández de Elche, Avda. de la Universidad, s/n, 03202 Elche

Received  December 2012 Revised  February 2013 Published  April 2014

In this paper we study the asymptotic behaviour of solutions of a lattice dynamical system of a logistic type. Namely, we study a system of infinite ordinary differential equations which can be obtained after the spatial discretization of a logistic equation with diffusion. We prove that a global attractor exists in suitable weighted spaces of sequences.
Citation: Tomás Caraballo, Francisco Morillas, José Valero. Asymptotic behaviour of a logistic lattice system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4019-4037. doi: 10.3934/dcds.2014.34.4019
References:
[1]

V. S. Afraimovich and V. I. Nekorkin, Chaos of traveling waves in a discrete chain of diffusively coupled maps,, Internat. J. Bifur. Chaos, 4 (1994), 631. doi: 10.1142/S0218127494000459. Google Scholar

[2]

J. M. Amigó, A. Giménez, F. Morillas and J. Valero, Attractors for a lattice dynamical system generated by non-newtonian fluids modelling suspensions,, Internat. J. Bifur. Chaos, 20 (2010), 2681. doi: 10.1142/S0218127410027295. Google Scholar

[3]

P. W. Bates and A. Chmaj, On a discrete convolution model for phase transitions,, Arch. Ration. Mech. Anal., 150 (1999), 281. doi: 10.1007/s002050050189. Google Scholar

[4]

P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems,, Stochastics & Dynamics, 6 (2006), 1. doi: 10.1142/S0219493706001621. Google Scholar

[5]

P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems,, Internat. J. Bifur. Chaos, 11 (2001), 143. doi: 10.1142/S0218127401002031. Google Scholar

[6]

J. Bell, Some threshhold results for models of myelinated nerves,, Mathematical Biosciences, 54 (1981), 181. doi: 10.1016/0025-5564(81)90085-7. Google Scholar

[7]

J. Bell and C. Cosner, Threshold behaviour and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons,, Quarterly Appl.Math., 42 (1984), 1. Google Scholar

[8]

W. J. Beyn and S. Yu. Pilyugin, Attractors of Reaction Diffusion Systems on Infinite Lattices,, J. Dynam. Differential Equations, 15 (2003), 485. doi: 10.1023/B:JODY.0000009745.41889.30. Google Scholar

[9]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise,, Front. Math. China, 3 (2008), 317. doi: 10.1007/s11464-008-0028-7. Google Scholar

[10]

T. Caraballo, F. Morillas and J. Valero, Random Attractors for stochastic lattice systems with non-Lipschitz nonlinearity,, J. Diff. Equat. App., 17 (2011), 161. doi: 10.1080/10236198.2010.549010. Google Scholar

[11]

T. Caraballo, F. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities,, J. Differential Equations, 253 (2012), 667. doi: 10.1016/j.jde.2012.03.020. Google Scholar

[12]

S.-N. Chow and J. Mallet-Paret, Pattern formulation and spatial chaos in lattice dynamical systems: I,, IEEE Trans. Circuits Syst., 42 (1995), 746. doi: 10.1109/81.473583. Google Scholar

[13]

S.-N. Chow, J. Mallet-Paret and W. Shen, Traveling waves in lattice dynamical systems,, J. Differential Equations., 149 (1998), 248. doi: 10.1006/jdeq.1998.3478. Google Scholar

[14]

S.-N. Chow, J. Mallet-Paret and E. S. Van Vleck, Pattern formation and spatial chaos in spatially discrete evolution equations,, Random Computational Dynamics, 4 (1996), 109. Google Scholar

[15]

S.-N. Chow and W. Shen, Dynamics in a discrete Nagumo equation: Spatial topological chaos,, SIAM J. Appl. Math., 55 (1995), 1764. doi: 10.1137/S0036139994261757. Google Scholar

[16]

L. O. Chua and T. Roska, The CNN paradigm,, IEEE Trans. Circuits Syst., 40 (1993), 147. doi: 10.1109/81.222795. Google Scholar

[17]

L. O. Chua and L. Yang, Cellular neural networks: Theory,, IEEE Trans. Circuits Syst., 35 (1988), 1257. doi: 10.1109/31.7600. Google Scholar

[18]

L. O. Chua and L. Yang, Cellular neural neetworks: Applications,, IEEE Trans. Circuits Syst., 35 (1988), 1273. doi: 10.1109/31.7601. Google Scholar

[19]

R. Dogaru and L. O. Chua, Edge of chaos and local activity domain of Fitz-Hugh-Nagumo equation,, Internat. J. Bifur. Chaos, 8 (1988), 211. doi: 10.1142/S0218127498000152. Google Scholar

[20]

T. Erneux and G. Nicolis, Propagating waves in discrete bistable reaction diffusion systems,, Physica D, 67 (1993), 237. doi: 10.1016/0167-2789(93)90208-I. Google Scholar

[21]

M. Gobbino and M. Sardella, On the connectedness of attractors for dynamical systems,, J. Differential Equations, 133 (1997), 1. doi: 10.1006/jdeq.1996.3166. Google Scholar

[22]

X. Han, Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise,, J. Math. Anal. Appl., 376 (2011), 481. doi: 10.1016/j.jmaa.2010.11.032. Google Scholar

[23]

X. Han, W. Shen and Sh. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces,, J. Differential Equations, 250 (2011), 1235. doi: 10.1016/j.jde.2010.10.018. Google Scholar

[24]

R. Kapval, Discrete models for chemically reacting systems,, J. Math. Chem., 6 (1991), 113. doi: 10.1007/BF01192578. Google Scholar

[25]

J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells,, SIAM J. Appl. Math., 47 (1987), 556. doi: 10.1137/0147038. Google Scholar

[26]

J. P. Keener, The effects of discrete gap junction coupling on propagation in myocardium,, J. Theor. Biol., 148 (1991), 49. doi: 10.1016/S0022-5193(05)80465-5. Google Scholar

[27]

O. A. Ladyzhenskaya, Some comments to my papers on the theory of attractors for abstract semigroups (in russian),, Zap. Nauchn. Sem. LOMI, 182 (1990), 102. doi: 10.1007/BF01671002. Google Scholar

[28]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Cambridge University Press, (1991). doi: 10.1017/CBO9780511569418. Google Scholar

[29]

J. P. Laplante and T. Erneux, Propagating failure in arrays of coupled bistable chemical reactors,, J. Phys. Chem., 96 (1992), 4931. doi: 10.1021/j100191a038. Google Scholar

[30]

J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems,, J. Dynam. Differential Equations, 11 (1999), 49. doi: 10.1023/A:1021841618074. Google Scholar

[31]

F. Morillas and J. Valero, A Peano's theorem and attractors for lattice dynamical systems,, Internat. J. Bifur. Chaos, 19 (2009), 557. doi: 10.1142/S0218127409023196. Google Scholar

[32]

F. Morillas and J. Valero, On the connectedness of the attainability set for lattice dynamical systems,, J. Diff. Equat. App., 18 (2012), 675. doi: 10.1080/10236198.2011.574621. Google Scholar

[33]

A. Pérez-Muñuzuri, V. Pérez-Muñuzuri, V. Pérez-Villar and L. O. Chua, Spiral waves on a 2-d array of nonlinear circuits,, IEEE Trans. Circuits Syst., 40 (1993), 872. Google Scholar

[34]

N. Rashevsky, Mathematical Biophysics,, 3rd revised edition, (1960). Google Scholar

[35]

A. C. Scott, Analysis of a myelinated nerve model,, Bull. Math. Biophys., 26 (1964), 247. doi: 10.1007/BF02479046. Google Scholar

[36]

W. Shen, Lifted lattices, hyperbolic structures, and topological disorders in coupled map lattices,, SIAM J. Appl. Math., 56 (1996), 1379. doi: 10.1137/S0036139995282670. Google Scholar

[37]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997). Google Scholar

[38]

B. Wang, Dynamics of systems of infinite lattices,, J. Differential Equations, 221 (2006), 224. doi: 10.1016/j.jde.2005.01.003. Google Scholar

[39]

B. Wang, Asymptotic behavior of non-autonomous lattice systems,, J. Math. Anal. Appl., 331 (2007), 121. doi: 10.1016/j.jmaa.2006.08.070. Google Scholar

[40]

E. Zeidler, Nonlinear Functional Analysis and Its Applciations,, Springer, (1986). doi: 10.1007/978-1-4612-4838-5. Google Scholar

[41]

B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation,, J. Differential Equations, 96 (1992), 1. doi: 10.1016/0022-0396(92)90142-A. Google Scholar

[42]

S. Zhou, Attractors for first order dissipative lattice dynamical systems,, Physica D, 178 (2003), 51. doi: 10.1016/S0167-2789(02)00807-2. Google Scholar

[43]

S. Zhou, Attractors and approximations for lattice dynamical systems,, J. Differential Equations, 200 (2004), 342. doi: 10.1016/j.jde.2004.02.005. Google Scholar

[44]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems,, J. Differential Equations, 224 (2006), 172. doi: 10.1016/j.jde.2005.06.024. Google Scholar

show all references

References:
[1]

V. S. Afraimovich and V. I. Nekorkin, Chaos of traveling waves in a discrete chain of diffusively coupled maps,, Internat. J. Bifur. Chaos, 4 (1994), 631. doi: 10.1142/S0218127494000459. Google Scholar

[2]

J. M. Amigó, A. Giménez, F. Morillas and J. Valero, Attractors for a lattice dynamical system generated by non-newtonian fluids modelling suspensions,, Internat. J. Bifur. Chaos, 20 (2010), 2681. doi: 10.1142/S0218127410027295. Google Scholar

[3]

P. W. Bates and A. Chmaj, On a discrete convolution model for phase transitions,, Arch. Ration. Mech. Anal., 150 (1999), 281. doi: 10.1007/s002050050189. Google Scholar

[4]

P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems,, Stochastics & Dynamics, 6 (2006), 1. doi: 10.1142/S0219493706001621. Google Scholar

[5]

P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems,, Internat. J. Bifur. Chaos, 11 (2001), 143. doi: 10.1142/S0218127401002031. Google Scholar

[6]

J. Bell, Some threshhold results for models of myelinated nerves,, Mathematical Biosciences, 54 (1981), 181. doi: 10.1016/0025-5564(81)90085-7. Google Scholar

[7]

J. Bell and C. Cosner, Threshold behaviour and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons,, Quarterly Appl.Math., 42 (1984), 1. Google Scholar

[8]

W. J. Beyn and S. Yu. Pilyugin, Attractors of Reaction Diffusion Systems on Infinite Lattices,, J. Dynam. Differential Equations, 15 (2003), 485. doi: 10.1023/B:JODY.0000009745.41889.30. Google Scholar

[9]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise,, Front. Math. China, 3 (2008), 317. doi: 10.1007/s11464-008-0028-7. Google Scholar

[10]

T. Caraballo, F. Morillas and J. Valero, Random Attractors for stochastic lattice systems with non-Lipschitz nonlinearity,, J. Diff. Equat. App., 17 (2011), 161. doi: 10.1080/10236198.2010.549010. Google Scholar

[11]

T. Caraballo, F. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities,, J. Differential Equations, 253 (2012), 667. doi: 10.1016/j.jde.2012.03.020. Google Scholar

[12]

S.-N. Chow and J. Mallet-Paret, Pattern formulation and spatial chaos in lattice dynamical systems: I,, IEEE Trans. Circuits Syst., 42 (1995), 746. doi: 10.1109/81.473583. Google Scholar

[13]

S.-N. Chow, J. Mallet-Paret and W. Shen, Traveling waves in lattice dynamical systems,, J. Differential Equations., 149 (1998), 248. doi: 10.1006/jdeq.1998.3478. Google Scholar

[14]

S.-N. Chow, J. Mallet-Paret and E. S. Van Vleck, Pattern formation and spatial chaos in spatially discrete evolution equations,, Random Computational Dynamics, 4 (1996), 109. Google Scholar

[15]

S.-N. Chow and W. Shen, Dynamics in a discrete Nagumo equation: Spatial topological chaos,, SIAM J. Appl. Math., 55 (1995), 1764. doi: 10.1137/S0036139994261757. Google Scholar

[16]

L. O. Chua and T. Roska, The CNN paradigm,, IEEE Trans. Circuits Syst., 40 (1993), 147. doi: 10.1109/81.222795. Google Scholar

[17]

L. O. Chua and L. Yang, Cellular neural networks: Theory,, IEEE Trans. Circuits Syst., 35 (1988), 1257. doi: 10.1109/31.7600. Google Scholar

[18]

L. O. Chua and L. Yang, Cellular neural neetworks: Applications,, IEEE Trans. Circuits Syst., 35 (1988), 1273. doi: 10.1109/31.7601. Google Scholar

[19]

R. Dogaru and L. O. Chua, Edge of chaos and local activity domain of Fitz-Hugh-Nagumo equation,, Internat. J. Bifur. Chaos, 8 (1988), 211. doi: 10.1142/S0218127498000152. Google Scholar

[20]

T. Erneux and G. Nicolis, Propagating waves in discrete bistable reaction diffusion systems,, Physica D, 67 (1993), 237. doi: 10.1016/0167-2789(93)90208-I. Google Scholar

[21]

M. Gobbino and M. Sardella, On the connectedness of attractors for dynamical systems,, J. Differential Equations, 133 (1997), 1. doi: 10.1006/jdeq.1996.3166. Google Scholar

[22]

X. Han, Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise,, J. Math. Anal. Appl., 376 (2011), 481. doi: 10.1016/j.jmaa.2010.11.032. Google Scholar

[23]

X. Han, W. Shen and Sh. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces,, J. Differential Equations, 250 (2011), 1235. doi: 10.1016/j.jde.2010.10.018. Google Scholar

[24]

R. Kapval, Discrete models for chemically reacting systems,, J. Math. Chem., 6 (1991), 113. doi: 10.1007/BF01192578. Google Scholar

[25]

J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells,, SIAM J. Appl. Math., 47 (1987), 556. doi: 10.1137/0147038. Google Scholar

[26]

J. P. Keener, The effects of discrete gap junction coupling on propagation in myocardium,, J. Theor. Biol., 148 (1991), 49. doi: 10.1016/S0022-5193(05)80465-5. Google Scholar

[27]

O. A. Ladyzhenskaya, Some comments to my papers on the theory of attractors for abstract semigroups (in russian),, Zap. Nauchn. Sem. LOMI, 182 (1990), 102. doi: 10.1007/BF01671002. Google Scholar

[28]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Cambridge University Press, (1991). doi: 10.1017/CBO9780511569418. Google Scholar

[29]

J. P. Laplante and T. Erneux, Propagating failure in arrays of coupled bistable chemical reactors,, J. Phys. Chem., 96 (1992), 4931. doi: 10.1021/j100191a038. Google Scholar

[30]

J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems,, J. Dynam. Differential Equations, 11 (1999), 49. doi: 10.1023/A:1021841618074. Google Scholar

[31]

F. Morillas and J. Valero, A Peano's theorem and attractors for lattice dynamical systems,, Internat. J. Bifur. Chaos, 19 (2009), 557. doi: 10.1142/S0218127409023196. Google Scholar

[32]

F. Morillas and J. Valero, On the connectedness of the attainability set for lattice dynamical systems,, J. Diff. Equat. App., 18 (2012), 675. doi: 10.1080/10236198.2011.574621. Google Scholar

[33]

A. Pérez-Muñuzuri, V. Pérez-Muñuzuri, V. Pérez-Villar and L. O. Chua, Spiral waves on a 2-d array of nonlinear circuits,, IEEE Trans. Circuits Syst., 40 (1993), 872. Google Scholar

[34]

N. Rashevsky, Mathematical Biophysics,, 3rd revised edition, (1960). Google Scholar

[35]

A. C. Scott, Analysis of a myelinated nerve model,, Bull. Math. Biophys., 26 (1964), 247. doi: 10.1007/BF02479046. Google Scholar

[36]

W. Shen, Lifted lattices, hyperbolic structures, and topological disorders in coupled map lattices,, SIAM J. Appl. Math., 56 (1996), 1379. doi: 10.1137/S0036139995282670. Google Scholar

[37]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997). Google Scholar

[38]

B. Wang, Dynamics of systems of infinite lattices,, J. Differential Equations, 221 (2006), 224. doi: 10.1016/j.jde.2005.01.003. Google Scholar

[39]

B. Wang, Asymptotic behavior of non-autonomous lattice systems,, J. Math. Anal. Appl., 331 (2007), 121. doi: 10.1016/j.jmaa.2006.08.070. Google Scholar

[40]

E. Zeidler, Nonlinear Functional Analysis and Its Applciations,, Springer, (1986). doi: 10.1007/978-1-4612-4838-5. Google Scholar

[41]

B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation,, J. Differential Equations, 96 (1992), 1. doi: 10.1016/0022-0396(92)90142-A. Google Scholar

[42]

S. Zhou, Attractors for first order dissipative lattice dynamical systems,, Physica D, 178 (2003), 51. doi: 10.1016/S0167-2789(02)00807-2. Google Scholar

[43]

S. Zhou, Attractors and approximations for lattice dynamical systems,, J. Differential Equations, 200 (2004), 342. doi: 10.1016/j.jde.2004.02.005. Google Scholar

[44]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems,, J. Differential Equations, 224 (2006), 172. doi: 10.1016/j.jde.2005.06.024. Google Scholar

[1]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[2]

Tomás Caraballo, Francisco Morillas, José Valero. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 51-77. doi: 10.3934/dcds.2014.34.51

[3]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[4]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[5]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[6]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[7]

Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541

[8]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[9]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[10]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[11]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[12]

Ahmed Y. Abdallah. Exponential attractors for second order lattice dynamical systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 803-813. doi: 10.3934/cpaa.2009.8.803

[13]

Xiaoying Han. Exponential attractors for lattice dynamical systems in weighted spaces. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 445-467. doi: 10.3934/dcds.2011.31.445

[14]

Hiroaki Morimoto. Optimal harvesting and planting control in stochastic logistic population models. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2545-2559. doi: 10.3934/dcdsb.2012.17.2545

[15]

Tomasz Kapela, Piotr Zgliczyński. A Lohner-type algorithm for control systems and ordinary differential inclusions. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 365-385. doi: 10.3934/dcdsb.2009.11.365

[16]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[17]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

[18]

Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268

[19]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[20]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (1)

[Back to Top]