October  2014, 34(10): 4085-4105. doi: 10.3934/dcds.2014.34.4085

Attractors for a double time-delayed 2D-Navier-Stokes model

1. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla

2. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla

3. 

Departamento de Matemática, Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, 13083-859 Campinas, SP, Brazil

Received  December 2012 Revised  July 2013 Published  April 2014

In this paper, a double time-delayed 2D-Navier-Stokes model is considered. It includes delays in the convective and the forcing terms. Existence and uniqueness results and suitable dynamical systems are established. We also analyze the existence of pullback attractors for the model in several phase-spaces and the relationship among them.
Citation: Julia García-Luengo, Pedro Marín-Rubio, Gabriela Planas. Attractors for a double time-delayed 2D-Navier-Stokes model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4085-4105. doi: 10.3934/dcds.2014.34.4085
References:
[1]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations,, J. Nonlinear Sci., 7 (1997), 475.  doi: 10.1007/s003329900037.  Google Scholar

[2]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, Nonlinear Anal., 64 (2006), 484.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[3]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains,, C. R. Math. Acad. Sci. Paris, 342 (2006), 263.  doi: 10.1016/j.crma.2005.12.015.  Google Scholar

[4]

T. Caraballo, P. E. Kloeden and J. Real, Unique strong solutions and $V$-attractors of a three dimensional system of globally modified Navier-Stokes equations,, Adv. Nonlinear Stud., 6 (2006), 411.   Google Scholar

[5]

T. Caraballo and J. Real, Navier-Stokes equations with delays,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441.  doi: 10.1098/rspa.2001.0807.  Google Scholar

[6]

T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181.  doi: 10.1098/rspa.2003.1166.  Google Scholar

[7]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays,, J. Differential Equations, 205 (2004), 271.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[8]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour,, J. Differential Equations, 252 (2012), 4333.  doi: 10.1016/j.jde.2012.01.010.  Google Scholar

[9]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity,, Adv. Nonlinear Stud., 13 (2013), 331.   Google Scholar

[10]

J. García-Luengo, P. Marín-Rubio and J. Real, Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays,, to appear in Commun. Pure Appl. Anal., ().   Google Scholar

[11]

M. J. Garrido-Atienza and P. Marín-Rubio, Navier-Stokes equations with delays on unbounded domains,, Nonlinear Anal., 64 (2006), 1100.  doi: 10.1016/j.na.2005.05.057.  Google Scholar

[12]

S. M. Guzzo and G. Planas, On a class of three dimensional Navier-Stokes equations with bounded delay,, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 225.  doi: 10.3934/dcdsb.2011.16.225.  Google Scholar

[13]

O. V. Kapustyan, P. O. Kasyanov and J. Valero, Pullback attractors for a class of extremal solutions of the 3D Navier-Stokes system,, J. Math. Anal. Appl., 373 (2011), 535.  doi: 10.1016/j.jmaa.2010.07.040.  Google Scholar

[14]

A. V. Kapustyan and J. Valero, Weak and strong attractors for the 3D Navier-Stokes system,, J. Differential Equations, 240 (2007), 249.  doi: 10.1016/j.jde.2007.06.008.  Google Scholar

[15]

P. E. Kloeden, T. Caraballo, J. A. Langa, J. Real and J. Valero, The three-dimensional globally modified Navier-Stokes equations,, in Advances in Nonlinear Analysis: Theory Methods and Applications, (2009), 11.   Google Scholar

[16]

P. E. Kloeden, P. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations,, Commun. Pure Appl. Anal., 8 (2009), 785.  doi: 10.3934/cpaa.2009.8.785.  Google Scholar

[17]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,, Dunod, (1969).   Google Scholar

[18]

W. Liu, Asymptotic behavior of solutions of time-delayed Burgers' equation,, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 47.  doi: 10.3934/dcdsb.2002.2.47.  Google Scholar

[19]

A. Z. Manitius, Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulation,, IEEE Trans. Automat. Control, 29 (1984), 1058.  doi: 10.1109/TAC.1984.1103436.  Google Scholar

[20]

P. Marín-Rubio, A. M. Márquez-Durán and J. Real, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays,, Adv. Nonlinear Stud., 11 (2011), 917.   Google Scholar

[21]

P. Marín-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains,, Nonlinear Anal., 67 (2007), 2784.  doi: 10.1016/j.na.2006.09.035.  Google Scholar

[22]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems,, Nonlinear Anal., 71 (2009), 3956.  doi: 10.1016/j.na.2009.02.065.  Google Scholar

[23]

P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators,, Discrete Contin. Dyn. Syst., 26 (2010), 989.  doi: 10.3934/dcds.2010.26.989.  Google Scholar

[24]

P. Marín-Rubio and J. Robinson, Attractors for the stochastic 3D Navier-Stokes equations,, Stoch. Dyn., 3 (2003), 279.  doi: 10.1142/S0219493703000772.  Google Scholar

[25]

G. Planas and E. Hernández, Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations,, Discrete Contin. Dyn. Syst., 21 (2008), 1245.  doi: 10.3934/dcds.2008.21.1245.  Google Scholar

[26]

M. Renardy, A class of quasilinear parabolic equations with infinite delay and application to a problem of viscoelasticity,, J. Differential Equations, 48 (1983), 280.  doi: 10.1016/0022-0396(83)90053-0.  Google Scholar

[27]

M. Romito, The uniqueness of weak solutions of the globally modified Navier-Stokes equations,, Adv. Nonlinear Stud., 9 (2009), 425.   Google Scholar

[28]

T. Taniguchi, The exponencial behavior of Navier-Stokes equations with time delay external force,, Discrete Contin. Dyn. Syst., 12 (2005), 997.  doi: 10.3934/dcds.2005.12.997.  Google Scholar

[29]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

show all references

References:
[1]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations,, J. Nonlinear Sci., 7 (1997), 475.  doi: 10.1007/s003329900037.  Google Scholar

[2]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, Nonlinear Anal., 64 (2006), 484.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[3]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains,, C. R. Math. Acad. Sci. Paris, 342 (2006), 263.  doi: 10.1016/j.crma.2005.12.015.  Google Scholar

[4]

T. Caraballo, P. E. Kloeden and J. Real, Unique strong solutions and $V$-attractors of a three dimensional system of globally modified Navier-Stokes equations,, Adv. Nonlinear Stud., 6 (2006), 411.   Google Scholar

[5]

T. Caraballo and J. Real, Navier-Stokes equations with delays,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441.  doi: 10.1098/rspa.2001.0807.  Google Scholar

[6]

T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181.  doi: 10.1098/rspa.2003.1166.  Google Scholar

[7]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays,, J. Differential Equations, 205 (2004), 271.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[8]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour,, J. Differential Equations, 252 (2012), 4333.  doi: 10.1016/j.jde.2012.01.010.  Google Scholar

[9]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity,, Adv. Nonlinear Stud., 13 (2013), 331.   Google Scholar

[10]

J. García-Luengo, P. Marín-Rubio and J. Real, Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays,, to appear in Commun. Pure Appl. Anal., ().   Google Scholar

[11]

M. J. Garrido-Atienza and P. Marín-Rubio, Navier-Stokes equations with delays on unbounded domains,, Nonlinear Anal., 64 (2006), 1100.  doi: 10.1016/j.na.2005.05.057.  Google Scholar

[12]

S. M. Guzzo and G. Planas, On a class of three dimensional Navier-Stokes equations with bounded delay,, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 225.  doi: 10.3934/dcdsb.2011.16.225.  Google Scholar

[13]

O. V. Kapustyan, P. O. Kasyanov and J. Valero, Pullback attractors for a class of extremal solutions of the 3D Navier-Stokes system,, J. Math. Anal. Appl., 373 (2011), 535.  doi: 10.1016/j.jmaa.2010.07.040.  Google Scholar

[14]

A. V. Kapustyan and J. Valero, Weak and strong attractors for the 3D Navier-Stokes system,, J. Differential Equations, 240 (2007), 249.  doi: 10.1016/j.jde.2007.06.008.  Google Scholar

[15]

P. E. Kloeden, T. Caraballo, J. A. Langa, J. Real and J. Valero, The three-dimensional globally modified Navier-Stokes equations,, in Advances in Nonlinear Analysis: Theory Methods and Applications, (2009), 11.   Google Scholar

[16]

P. E. Kloeden, P. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations,, Commun. Pure Appl. Anal., 8 (2009), 785.  doi: 10.3934/cpaa.2009.8.785.  Google Scholar

[17]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,, Dunod, (1969).   Google Scholar

[18]

W. Liu, Asymptotic behavior of solutions of time-delayed Burgers' equation,, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 47.  doi: 10.3934/dcdsb.2002.2.47.  Google Scholar

[19]

A. Z. Manitius, Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulation,, IEEE Trans. Automat. Control, 29 (1984), 1058.  doi: 10.1109/TAC.1984.1103436.  Google Scholar

[20]

P. Marín-Rubio, A. M. Márquez-Durán and J. Real, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays,, Adv. Nonlinear Stud., 11 (2011), 917.   Google Scholar

[21]

P. Marín-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains,, Nonlinear Anal., 67 (2007), 2784.  doi: 10.1016/j.na.2006.09.035.  Google Scholar

[22]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems,, Nonlinear Anal., 71 (2009), 3956.  doi: 10.1016/j.na.2009.02.065.  Google Scholar

[23]

P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators,, Discrete Contin. Dyn. Syst., 26 (2010), 989.  doi: 10.3934/dcds.2010.26.989.  Google Scholar

[24]

P. Marín-Rubio and J. Robinson, Attractors for the stochastic 3D Navier-Stokes equations,, Stoch. Dyn., 3 (2003), 279.  doi: 10.1142/S0219493703000772.  Google Scholar

[25]

G. Planas and E. Hernández, Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations,, Discrete Contin. Dyn. Syst., 21 (2008), 1245.  doi: 10.3934/dcds.2008.21.1245.  Google Scholar

[26]

M. Renardy, A class of quasilinear parabolic equations with infinite delay and application to a problem of viscoelasticity,, J. Differential Equations, 48 (1983), 280.  doi: 10.1016/0022-0396(83)90053-0.  Google Scholar

[27]

M. Romito, The uniqueness of weak solutions of the globally modified Navier-Stokes equations,, Adv. Nonlinear Stud., 9 (2009), 425.   Google Scholar

[28]

T. Taniguchi, The exponencial behavior of Navier-Stokes equations with time delay external force,, Discrete Contin. Dyn. Syst., 12 (2005), 997.  doi: 10.3934/dcds.2005.12.997.  Google Scholar

[29]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[4]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[5]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[6]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[7]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[8]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[9]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[10]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[11]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[12]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[13]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[14]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[15]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[16]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[17]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[18]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[19]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[20]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (8)

[Back to Top]