October  2014, 34(10): 4085-4105. doi: 10.3934/dcds.2014.34.4085

Attractors for a double time-delayed 2D-Navier-Stokes model

1. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla

2. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla

3. 

Departamento de Matemática, Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, 13083-859 Campinas, SP, Brazil

Received  December 2012 Revised  July 2013 Published  April 2014

In this paper, a double time-delayed 2D-Navier-Stokes model is considered. It includes delays in the convective and the forcing terms. Existence and uniqueness results and suitable dynamical systems are established. We also analyze the existence of pullback attractors for the model in several phase-spaces and the relationship among them.
Citation: Julia García-Luengo, Pedro Marín-Rubio, Gabriela Planas. Attractors for a double time-delayed 2D-Navier-Stokes model. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4085-4105. doi: 10.3934/dcds.2014.34.4085
References:
[1]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475-502. doi: 10.1007/s003329900037.

[2]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111.

[3]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Math. Acad. Sci. Paris, 342 (2006), 263-268. doi: 10.1016/j.crma.2005.12.015.

[4]

T. Caraballo, P. E. Kloeden and J. Real, Unique strong solutions and $V$-attractors of a three dimensional system of globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 6 (2006), 411-436.

[5]

T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453. doi: 10.1098/rspa.2001.0807.

[6]

T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194. doi: 10.1098/rspa.2003.1166.

[7]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297. doi: 10.1016/j.jde.2004.04.012.

[8]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour, J. Differential Equations, 252 (2012), 4333-4356. doi: 10.1016/j.jde.2012.01.010.

[9]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13 (2013), 331-357.

[10]

J. García-Luengo, P. Marín-Rubio and J. Real, Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays, to appear in Commun. Pure Appl. Anal.

[11]

M. J. Garrido-Atienza and P. Marín-Rubio, Navier-Stokes equations with delays on unbounded domains, Nonlinear Anal., 64 (2006), 1100-1118. doi: 10.1016/j.na.2005.05.057.

[12]

S. M. Guzzo and G. Planas, On a class of three dimensional Navier-Stokes equations with bounded delay, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 225-238. doi: 10.3934/dcdsb.2011.16.225.

[13]

O. V. Kapustyan, P. O. Kasyanov and J. Valero, Pullback attractors for a class of extremal solutions of the 3D Navier-Stokes system, J. Math. Anal. Appl., 373 (2011), 535-547. doi: 10.1016/j.jmaa.2010.07.040.

[14]

A. V. Kapustyan and J. Valero, Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 240 (2007), 249-278. doi: 10.1016/j.jde.2007.06.008.

[15]

P. E. Kloeden, T. Caraballo, J. A. Langa, J. Real and J. Valero, The three-dimensional globally modified Navier-Stokes equations, in Advances in Nonlinear Analysis: Theory Methods and Applications, Math. Probl. Eng. Aerosp. Sci., 3, Cambridge Scientific Publishers, Cambridge, 2009, 11-22.

[16]

P. E. Kloeden, P. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 8 (2009), 785-802. doi: 10.3934/cpaa.2009.8.785.

[17]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.

[18]

W. Liu, Asymptotic behavior of solutions of time-delayed Burgers' equation, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 47-56. doi: 10.3934/dcdsb.2002.2.47.

[19]

A. Z. Manitius, Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulation, IEEE Trans. Automat. Control, 29 (1984), 1058-1068. doi: 10.1109/TAC.1984.1103436.

[20]

P. Marín-Rubio, A. M. Márquez-Durán and J. Real, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays, Adv. Nonlinear Stud., 11 (2011), 917-927.

[21]

P. Marín-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains, Nonlinear Anal., 67 (2007), 2784-2799. doi: 10.1016/j.na.2006.09.035.

[22]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal., 71 (2009), 3956-3963. doi: 10.1016/j.na.2009.02.065.

[23]

P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators, Discrete Contin. Dyn. Syst., 26 (2010), 989-1006. doi: 10.3934/dcds.2010.26.989.

[24]

P. Marín-Rubio and J. Robinson, Attractors for the stochastic 3D Navier-Stokes equations, Stoch. Dyn., 3 (2003), 279-297. doi: 10.1142/S0219493703000772.

[25]

G. Planas and E. Hernández, Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations, Discrete Contin. Dyn. Syst., 21 (2008), 1245-1258. doi: 10.3934/dcds.2008.21.1245.

[26]

M. Renardy, A class of quasilinear parabolic equations with infinite delay and application to a problem of viscoelasticity, J. Differential Equations, 48 (1983), 280-292. doi: 10.1016/0022-0396(83)90053-0.

[27]

M. Romito, The uniqueness of weak solutions of the globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 9 (2009), 425-427.

[28]

T. Taniguchi, The exponencial behavior of Navier-Stokes equations with time delay external force, Discrete Contin. Dyn. Syst., 12 (2005), 997-1018. doi: 10.3934/dcds.2005.12.997.

[29]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.

show all references

References:
[1]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475-502. doi: 10.1007/s003329900037.

[2]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111.

[3]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Math. Acad. Sci. Paris, 342 (2006), 263-268. doi: 10.1016/j.crma.2005.12.015.

[4]

T. Caraballo, P. E. Kloeden and J. Real, Unique strong solutions and $V$-attractors of a three dimensional system of globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 6 (2006), 411-436.

[5]

T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453. doi: 10.1098/rspa.2001.0807.

[6]

T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194. doi: 10.1098/rspa.2003.1166.

[7]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297. doi: 10.1016/j.jde.2004.04.012.

[8]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour, J. Differential Equations, 252 (2012), 4333-4356. doi: 10.1016/j.jde.2012.01.010.

[9]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13 (2013), 331-357.

[10]

J. García-Luengo, P. Marín-Rubio and J. Real, Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays, to appear in Commun. Pure Appl. Anal.

[11]

M. J. Garrido-Atienza and P. Marín-Rubio, Navier-Stokes equations with delays on unbounded domains, Nonlinear Anal., 64 (2006), 1100-1118. doi: 10.1016/j.na.2005.05.057.

[12]

S. M. Guzzo and G. Planas, On a class of three dimensional Navier-Stokes equations with bounded delay, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 225-238. doi: 10.3934/dcdsb.2011.16.225.

[13]

O. V. Kapustyan, P. O. Kasyanov and J. Valero, Pullback attractors for a class of extremal solutions of the 3D Navier-Stokes system, J. Math. Anal. Appl., 373 (2011), 535-547. doi: 10.1016/j.jmaa.2010.07.040.

[14]

A. V. Kapustyan and J. Valero, Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 240 (2007), 249-278. doi: 10.1016/j.jde.2007.06.008.

[15]

P. E. Kloeden, T. Caraballo, J. A. Langa, J. Real and J. Valero, The three-dimensional globally modified Navier-Stokes equations, in Advances in Nonlinear Analysis: Theory Methods and Applications, Math. Probl. Eng. Aerosp. Sci., 3, Cambridge Scientific Publishers, Cambridge, 2009, 11-22.

[16]

P. E. Kloeden, P. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 8 (2009), 785-802. doi: 10.3934/cpaa.2009.8.785.

[17]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.

[18]

W. Liu, Asymptotic behavior of solutions of time-delayed Burgers' equation, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 47-56. doi: 10.3934/dcdsb.2002.2.47.

[19]

A. Z. Manitius, Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulation, IEEE Trans. Automat. Control, 29 (1984), 1058-1068. doi: 10.1109/TAC.1984.1103436.

[20]

P. Marín-Rubio, A. M. Márquez-Durán and J. Real, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays, Adv. Nonlinear Stud., 11 (2011), 917-927.

[21]

P. Marín-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains, Nonlinear Anal., 67 (2007), 2784-2799. doi: 10.1016/j.na.2006.09.035.

[22]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal., 71 (2009), 3956-3963. doi: 10.1016/j.na.2009.02.065.

[23]

P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators, Discrete Contin. Dyn. Syst., 26 (2010), 989-1006. doi: 10.3934/dcds.2010.26.989.

[24]

P. Marín-Rubio and J. Robinson, Attractors for the stochastic 3D Navier-Stokes equations, Stoch. Dyn., 3 (2003), 279-297. doi: 10.1142/S0219493703000772.

[25]

G. Planas and E. Hernández, Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations, Discrete Contin. Dyn. Syst., 21 (2008), 1245-1258. doi: 10.3934/dcds.2008.21.1245.

[26]

M. Renardy, A class of quasilinear parabolic equations with infinite delay and application to a problem of viscoelasticity, J. Differential Equations, 48 (1983), 280-292. doi: 10.1016/0022-0396(83)90053-0.

[27]

M. Romito, The uniqueness of weak solutions of the globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 9 (2009), 425-427.

[28]

T. Taniguchi, The exponencial behavior of Navier-Stokes equations with time delay external force, Discrete Contin. Dyn. Syst., 12 (2005), 997-1018. doi: 10.3934/dcds.2005.12.997.

[29]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.

[1]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[2]

Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 55-80. doi: 10.3934/dcdsb.2019172

[3]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Pullback attractors for globally modified Navier-Stokes equations with infinite delays. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 779-796. doi: 10.3934/dcds.2011.31.779

[4]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203

[5]

Hongyong Cui, Mirelson M. Freitas, José A. Langa. Squeezing and finite dimensionality of cocycle attractors for 2D stochastic Navier-Stokes equation with non-autonomous forcing. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1297-1324. doi: 10.3934/dcdsb.2018152

[6]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 181-201. doi: 10.3934/dcds.2014.34.181

[7]

Keyan Wang, Yao Xiao. Local well-posedness for Navier-Stokes equations with a class of ill-prepared initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2987-3011. doi: 10.3934/dcds.2020158

[8]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1603-1621. doi: 10.3934/cpaa.2015.14.1603

[9]

P.E. Kloeden, José A. Langa, José Real. Pullback V-attractors of the 3-dimensional globally modified Navier-Stokes equations. Communications on Pure and Applied Analysis, 2007, 6 (4) : 937-955. doi: 10.3934/cpaa.2007.6.937

[10]

Grzegorz Łukaszewicz. Pullback attractors and statistical solutions for 2-D Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 643-659. doi: 10.3934/dcdsb.2008.9.643

[11]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[12]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[13]

Fuzhi Li, Dongmei Xu. Asymptotically autonomous dynamics for non-autonomous stochastic $ g $-Navier-Stokes equation with additive noise. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022087

[14]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[15]

Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517

[16]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations and Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[17]

Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143

[18]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[19]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

[20]

Sandro M. Guzzo, Gabriela Planas. On a class of three dimensional Navier-Stokes equations with bounded delay. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 225-238. doi: 10.3934/dcdsb.2011.16.225

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (10)

[Back to Top]