October  2014, 34(10): 4107-4126. doi: 10.3934/dcds.2014.34.4107

Biodiversity and vulnerability in a 3D mutualistic system

1. 

Universidad Central del Ecuador, Ciudadela Universitaria, Av. América S/N, Quito, Ecuador

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Calle Tarfia s/n, 41012-Seville, Spain

3. 

Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Fac. de Matemáticas, Univ. de Sevilla, C/. Tarfia s/n, 41012 - Sevilla

Received  January 2013 Revised  February 2013 Published  April 2014

In this paper we study a three dimensional mutualistic model of two plants in competition and a pollinator with cooperative relation with plants. We compare the dynamical properties of this system with the associated one under absence of the pollinator. We observe how cooperation is a common fact to increase biodiversity, which it is known that, generically, holds for general mutualistic dynamical systems in Ecology as introduced in [4]. We also give mathematical evidence on how a cooperative species induces an increased biodiversity, even if the species is push to extinction. For this fact, we propose a necessary change in the model formulation which could explain this kind of phenomenon.
Citation: Giovanny Guerrero, José Antonio Langa, Antonio Suárez. Biodiversity and vulnerability in a 3D mutualistic system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4107-4126. doi: 10.3934/dcds.2014.34.4107
References:
[1]

J. Bascompte, P. Jordano, C. J. Melián and J. M. Olesen, The nested assembly of plant-animal mutualistic networks,, Proc. Natl Acad. Sci. USA, 100 (2003), 9383. doi: 10.1073/pnas.1633576100. Google Scholar

[2]

J. Bascompte, P. Jordano and J. M. Olesen, Asymmetric coevolutionary networks facilitate biodiversity maintenance,, Science, 312 (2006), 431. doi: 10.1126/science.1123412. Google Scholar

[3]

J. Bascompte and P. Jordano, The structure of plant-animal mutualistic networks: The architecture of biodiversity,, Annu. Rev. Ecol. Evol. Syst., 38 (2007), 567. Google Scholar

[4]

U. Bastolla, M. A. Fortuna, A. Pascual-García, A. Ferrera, B. Luque and J. Bascompte, The architecture of mutualistic networks minimizes competition and increases biodiversity,, Nature, 458 (2009), 1018. doi: 10.1038/nature07950. Google Scholar

[5]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations,, Wiley Series in Mathematical and Computational Biology, (2003). doi: 10.1002/0470871296. Google Scholar

[6]

C. E. Clark and T. G. Hallam, The community matrix in three species community models,, J. Math. Biology, 16 (1982), 25. doi: 10.1007/BF00275158. Google Scholar

[7]

B. S. Goh, Stability in models of mutualism,, The American Naturalist, 111 (1977), 135. doi: 10.1086/283384. Google Scholar

[8]

B. S. Goh, Stability in models of mutualism,, The American Naturalist, 113 (1979), 261. doi: 10.1086/283384. Google Scholar

[9]

V. Hutson, A theorem on average Lyapunov functions,, Monatsch. Math., 98 (1984), 267. doi: 10.1007/BF01540776. Google Scholar

[10]

J. D. Murray, Mathematical Biology,, Springer, (1993). doi: 10.1007/b98869. Google Scholar

[11]

S. Saavedra, D. B. Stouffer, B. Uzzi and J. Bascompte, Strong contributors to network persistence are the most vulnerable to extinction,, Nature, 478 (2011), 233. doi: 10.1038/nature10433. Google Scholar

[12]

H. L. Smith, Competing subcommunities of mutualists and a generalized Kamke theorem,, SIAM J. Appl. Math., 46 (1986), 856. doi: 10.1137/0146052. Google Scholar

[13]

G. Sugihara and H. Ye, Cooperative network dynamics,, Nature (News and View), 458 (2009), 979. doi: 10.1038/458979a. Google Scholar

[14]

Y. Takeuchi, Global Dynamical Properties of Lotka-Volterra Systems,, World Scientific Publishing Co., (1996). doi: 10.1142/9789812830548. Google Scholar

[15]

Y. Wang and H. Wu, Dynamics of a cooperation-competition model for the WWW market,, Physica A, 339 (2004), 609. doi: 10.1016/j.physa.2004.03.067. Google Scholar

show all references

References:
[1]

J. Bascompte, P. Jordano, C. J. Melián and J. M. Olesen, The nested assembly of plant-animal mutualistic networks,, Proc. Natl Acad. Sci. USA, 100 (2003), 9383. doi: 10.1073/pnas.1633576100. Google Scholar

[2]

J. Bascompte, P. Jordano and J. M. Olesen, Asymmetric coevolutionary networks facilitate biodiversity maintenance,, Science, 312 (2006), 431. doi: 10.1126/science.1123412. Google Scholar

[3]

J. Bascompte and P. Jordano, The structure of plant-animal mutualistic networks: The architecture of biodiversity,, Annu. Rev. Ecol. Evol. Syst., 38 (2007), 567. Google Scholar

[4]

U. Bastolla, M. A. Fortuna, A. Pascual-García, A. Ferrera, B. Luque and J. Bascompte, The architecture of mutualistic networks minimizes competition and increases biodiversity,, Nature, 458 (2009), 1018. doi: 10.1038/nature07950. Google Scholar

[5]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations,, Wiley Series in Mathematical and Computational Biology, (2003). doi: 10.1002/0470871296. Google Scholar

[6]

C. E. Clark and T. G. Hallam, The community matrix in three species community models,, J. Math. Biology, 16 (1982), 25. doi: 10.1007/BF00275158. Google Scholar

[7]

B. S. Goh, Stability in models of mutualism,, The American Naturalist, 111 (1977), 135. doi: 10.1086/283384. Google Scholar

[8]

B. S. Goh, Stability in models of mutualism,, The American Naturalist, 113 (1979), 261. doi: 10.1086/283384. Google Scholar

[9]

V. Hutson, A theorem on average Lyapunov functions,, Monatsch. Math., 98 (1984), 267. doi: 10.1007/BF01540776. Google Scholar

[10]

J. D. Murray, Mathematical Biology,, Springer, (1993). doi: 10.1007/b98869. Google Scholar

[11]

S. Saavedra, D. B. Stouffer, B. Uzzi and J. Bascompte, Strong contributors to network persistence are the most vulnerable to extinction,, Nature, 478 (2011), 233. doi: 10.1038/nature10433. Google Scholar

[12]

H. L. Smith, Competing subcommunities of mutualists and a generalized Kamke theorem,, SIAM J. Appl. Math., 46 (1986), 856. doi: 10.1137/0146052. Google Scholar

[13]

G. Sugihara and H. Ye, Cooperative network dynamics,, Nature (News and View), 458 (2009), 979. doi: 10.1038/458979a. Google Scholar

[14]

Y. Takeuchi, Global Dynamical Properties of Lotka-Volterra Systems,, World Scientific Publishing Co., (1996). doi: 10.1142/9789812830548. Google Scholar

[15]

Y. Wang and H. Wu, Dynamics of a cooperation-competition model for the WWW market,, Physica A, 339 (2004), 609. doi: 10.1016/j.physa.2004.03.067. Google Scholar

[1]

Junxiong Jia, Jigen Peng, Kexue Li. On the decay and stability of global solutions to the 3D inhomogeneous MHD system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 745-780. doi: 10.3934/cpaa.2017036

[2]

Xiaojing Xu, Zhuan Ye. Note on global regularity of 3D generalized magnetohydrodynamic-$\alpha$ model with zero diffusivity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 585-595. doi: 10.3934/cpaa.2015.14.585

[3]

Jingrui Su. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3423-3434. doi: 10.3934/dcds.2017145

[4]

Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159

[5]

Ning Ju. The finite dimensional global attractor for the 3D viscous Primitive Equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7001-7020. doi: 10.3934/dcds.2016104

[6]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure & Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[7]

Tomás Caraballo, Antonio M. Márquez-Durán, José Real. Pullback and forward attractors for a 3D LANS$-\alpha$ model with delay. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 559-578. doi: 10.3934/dcds.2006.15.559

[8]

Ferdinando Auricchio, Elena Bonetti. A new "flexible" 3D macroscopic model for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 277-291. doi: 10.3934/dcdss.2013.6.277

[9]

Boyan Jonov, Thomas C. Sideris. Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1407-1442. doi: 10.3934/cpaa.2015.14.1407

[10]

Thomas März, Andreas Weinmann. Model-based reconstruction for magnetic particle imaging in 2D and 3D. Inverse Problems & Imaging, 2016, 10 (4) : 1087-1110. doi: 10.3934/ipi.2016033

[11]

Shujuan Lü, Chunbiao Gan, Baohua Wang, Linning Qian, Meisheng Li. Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 507-527. doi: 10.3934/dcdsb.2011.16.507

[12]

Marta Lewicka, Mohammadreza Raoofi. A stability result for the Stokes-Boussinesq equations in infinite 3d channels. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2615-2625. doi: 10.3934/cpaa.2013.12.2615

[13]

Xuecheng Wang. Global solution for the $3D$ quadratic Schrödinger equation of $Q(u, \bar{u}$) type. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5037-5048. doi: 10.3934/dcds.2017217

[14]

Jishan Fan, Fucai Li, Gen Nakamura. Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain. Conference Publications, 2015, 2015 (special) : 387-394. doi: 10.3934/proc.2015.0387

[15]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[16]

Mei Wang, Zilai Li, Zhenhua Guo. Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 1-24. doi: 10.3934/cpaa.2017001

[17]

Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075

[18]

Yulan Wang, Xinru Cao. Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3235-3254. doi: 10.3934/dcdsb.2015.20.3235

[19]

Fei Chen, Yongsheng Li, Huan Xu. Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2945-2967. doi: 10.3934/dcds.2016.36.2945

[20]

Quansen Jiu, Jitao Liu. Global regularity for the 3D axisymmetric MHD Equations with horizontal dissipation and vertical magnetic diffusion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 301-322. doi: 10.3934/dcds.2015.35.301

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

[Back to Top]