October  2014, 34(10): 4107-4126. doi: 10.3934/dcds.2014.34.4107

Biodiversity and vulnerability in a 3D mutualistic system

1. 

Universidad Central del Ecuador, Ciudadela Universitaria, Av. América S/N, Quito, Ecuador

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Calle Tarfia s/n, 41012-Seville, Spain

3. 

Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Fac. de Matemáticas, Univ. de Sevilla, C/. Tarfia s/n, 41012 - Sevilla

Received  January 2013 Revised  February 2013 Published  April 2014

In this paper we study a three dimensional mutualistic model of two plants in competition and a pollinator with cooperative relation with plants. We compare the dynamical properties of this system with the associated one under absence of the pollinator. We observe how cooperation is a common fact to increase biodiversity, which it is known that, generically, holds for general mutualistic dynamical systems in Ecology as introduced in [4]. We also give mathematical evidence on how a cooperative species induces an increased biodiversity, even if the species is push to extinction. For this fact, we propose a necessary change in the model formulation which could explain this kind of phenomenon.
Citation: Giovanny Guerrero, José Antonio Langa, Antonio Suárez. Biodiversity and vulnerability in a 3D mutualistic system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4107-4126. doi: 10.3934/dcds.2014.34.4107
References:
[1]

J. Bascompte, P. Jordano, C. J. Melián and J. M. Olesen, The nested assembly of plant-animal mutualistic networks,, Proc. Natl Acad. Sci. USA, 100 (2003), 9383.  doi: 10.1073/pnas.1633576100.  Google Scholar

[2]

J. Bascompte, P. Jordano and J. M. Olesen, Asymmetric coevolutionary networks facilitate biodiversity maintenance,, Science, 312 (2006), 431.  doi: 10.1126/science.1123412.  Google Scholar

[3]

J. Bascompte and P. Jordano, The structure of plant-animal mutualistic networks: The architecture of biodiversity,, Annu. Rev. Ecol. Evol. Syst., 38 (2007), 567.   Google Scholar

[4]

U. Bastolla, M. A. Fortuna, A. Pascual-García, A. Ferrera, B. Luque and J. Bascompte, The architecture of mutualistic networks minimizes competition and increases biodiversity,, Nature, 458 (2009), 1018.  doi: 10.1038/nature07950.  Google Scholar

[5]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations,, Wiley Series in Mathematical and Computational Biology, (2003).  doi: 10.1002/0470871296.  Google Scholar

[6]

C. E. Clark and T. G. Hallam, The community matrix in three species community models,, J. Math. Biology, 16 (1982), 25.  doi: 10.1007/BF00275158.  Google Scholar

[7]

B. S. Goh, Stability in models of mutualism,, The American Naturalist, 111 (1977), 135.  doi: 10.1086/283384.  Google Scholar

[8]

B. S. Goh, Stability in models of mutualism,, The American Naturalist, 113 (1979), 261.  doi: 10.1086/283384.  Google Scholar

[9]

V. Hutson, A theorem on average Lyapunov functions,, Monatsch. Math., 98 (1984), 267.  doi: 10.1007/BF01540776.  Google Scholar

[10]

J. D. Murray, Mathematical Biology,, Springer, (1993).  doi: 10.1007/b98869.  Google Scholar

[11]

S. Saavedra, D. B. Stouffer, B. Uzzi and J. Bascompte, Strong contributors to network persistence are the most vulnerable to extinction,, Nature, 478 (2011), 233.  doi: 10.1038/nature10433.  Google Scholar

[12]

H. L. Smith, Competing subcommunities of mutualists and a generalized Kamke theorem,, SIAM J. Appl. Math., 46 (1986), 856.  doi: 10.1137/0146052.  Google Scholar

[13]

G. Sugihara and H. Ye, Cooperative network dynamics,, Nature (News and View), 458 (2009), 979.  doi: 10.1038/458979a.  Google Scholar

[14]

Y. Takeuchi, Global Dynamical Properties of Lotka-Volterra Systems,, World Scientific Publishing Co., (1996).  doi: 10.1142/9789812830548.  Google Scholar

[15]

Y. Wang and H. Wu, Dynamics of a cooperation-competition model for the WWW market,, Physica A, 339 (2004), 609.  doi: 10.1016/j.physa.2004.03.067.  Google Scholar

show all references

References:
[1]

J. Bascompte, P. Jordano, C. J. Melián and J. M. Olesen, The nested assembly of plant-animal mutualistic networks,, Proc. Natl Acad. Sci. USA, 100 (2003), 9383.  doi: 10.1073/pnas.1633576100.  Google Scholar

[2]

J. Bascompte, P. Jordano and J. M. Olesen, Asymmetric coevolutionary networks facilitate biodiversity maintenance,, Science, 312 (2006), 431.  doi: 10.1126/science.1123412.  Google Scholar

[3]

J. Bascompte and P. Jordano, The structure of plant-animal mutualistic networks: The architecture of biodiversity,, Annu. Rev. Ecol. Evol. Syst., 38 (2007), 567.   Google Scholar

[4]

U. Bastolla, M. A. Fortuna, A. Pascual-García, A. Ferrera, B. Luque and J. Bascompte, The architecture of mutualistic networks minimizes competition and increases biodiversity,, Nature, 458 (2009), 1018.  doi: 10.1038/nature07950.  Google Scholar

[5]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations,, Wiley Series in Mathematical and Computational Biology, (2003).  doi: 10.1002/0470871296.  Google Scholar

[6]

C. E. Clark and T. G. Hallam, The community matrix in three species community models,, J. Math. Biology, 16 (1982), 25.  doi: 10.1007/BF00275158.  Google Scholar

[7]

B. S. Goh, Stability in models of mutualism,, The American Naturalist, 111 (1977), 135.  doi: 10.1086/283384.  Google Scholar

[8]

B. S. Goh, Stability in models of mutualism,, The American Naturalist, 113 (1979), 261.  doi: 10.1086/283384.  Google Scholar

[9]

V. Hutson, A theorem on average Lyapunov functions,, Monatsch. Math., 98 (1984), 267.  doi: 10.1007/BF01540776.  Google Scholar

[10]

J. D. Murray, Mathematical Biology,, Springer, (1993).  doi: 10.1007/b98869.  Google Scholar

[11]

S. Saavedra, D. B. Stouffer, B. Uzzi and J. Bascompte, Strong contributors to network persistence are the most vulnerable to extinction,, Nature, 478 (2011), 233.  doi: 10.1038/nature10433.  Google Scholar

[12]

H. L. Smith, Competing subcommunities of mutualists and a generalized Kamke theorem,, SIAM J. Appl. Math., 46 (1986), 856.  doi: 10.1137/0146052.  Google Scholar

[13]

G. Sugihara and H. Ye, Cooperative network dynamics,, Nature (News and View), 458 (2009), 979.  doi: 10.1038/458979a.  Google Scholar

[14]

Y. Takeuchi, Global Dynamical Properties of Lotka-Volterra Systems,, World Scientific Publishing Co., (1996).  doi: 10.1142/9789812830548.  Google Scholar

[15]

Y. Wang and H. Wu, Dynamics of a cooperation-competition model for the WWW market,, Physica A, 339 (2004), 609.  doi: 10.1016/j.physa.2004.03.067.  Google Scholar

[1]

Junxiong Jia, Jigen Peng, Kexue Li. On the decay and stability of global solutions to the 3D inhomogeneous MHD system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 745-780. doi: 10.3934/cpaa.2017036

[2]

Xiaojing Xu, Zhuan Ye. Note on global regularity of 3D generalized magnetohydrodynamic-$\alpha$ model with zero diffusivity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 585-595. doi: 10.3934/cpaa.2015.14.585

[3]

Edriss S. Titi, Saber Trabelsi. Global well-posedness of a 3D MHD model in porous media. Journal of Geometric Mechanics, 2019, 11 (4) : 621-637. doi: 10.3934/jgm.2019031

[4]

Jingrui Su. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3423-3434. doi: 10.3934/dcds.2017145

[5]

Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159

[6]

Ning Ju. The finite dimensional global attractor for the 3D viscous Primitive Equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7001-7020. doi: 10.3934/dcds.2016104

[7]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure & Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[8]

Tomás Caraballo, Antonio M. Márquez-Durán, José Real. Pullback and forward attractors for a 3D LANS$-\alpha$ model with delay. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 559-578. doi: 10.3934/dcds.2006.15.559

[9]

Ferdinando Auricchio, Elena Bonetti. A new "flexible" 3D macroscopic model for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 277-291. doi: 10.3934/dcdss.2013.6.277

[10]

Boyan Jonov, Thomas C. Sideris. Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1407-1442. doi: 10.3934/cpaa.2015.14.1407

[11]

Thomas März, Andreas Weinmann. Model-based reconstruction for magnetic particle imaging in 2D and 3D. Inverse Problems & Imaging, 2016, 10 (4) : 1087-1110. doi: 10.3934/ipi.2016033

[12]

Shujuan Lü, Chunbiao Gan, Baohua Wang, Linning Qian, Meisheng Li. Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 507-527. doi: 10.3934/dcdsb.2011.16.507

[13]

Marta Lewicka, Mohammadreza Raoofi. A stability result for the Stokes-Boussinesq equations in infinite 3d channels. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2615-2625. doi: 10.3934/cpaa.2013.12.2615

[14]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 0 (0) : 0-0. doi: 10.3934/era.2020074

[15]

Xuecheng Wang. Global solution for the $3D$ quadratic Schrödinger equation of $Q(u, \bar{u}$) type. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5037-5048. doi: 10.3934/dcds.2017217

[16]

Manil T. Mohan. Global and exponential attractors for the 3D Kelvin-Voigt-Brinkman-Forchheimer equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3393-3436. doi: 10.3934/dcdsb.2020067

[17]

Jishan Fan, Fucai Li, Gen Nakamura. Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain. Conference Publications, 2015, 2015 (special) : 387-394. doi: 10.3934/proc.2015.0387

[18]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[19]

Boling Guo, Guoli Zhou. Finite dimensionality of global attractor for the solutions to 3D viscous primitive equations of large-scale moist atmosphere. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4305-4327. doi: 10.3934/dcdsb.2018160

[20]

Michael Röckner, Rongchan Zhu, Xiangchan Zhu. A remark on global solutions to random 3D vorticity equations for small initial data. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4021-4030. doi: 10.3934/dcdsb.2019048

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (2)

[Back to Top]