-
Previous Article
Asymptotic behaviour for prey-predator systems and logistic equations with unbounded time-dependent coefficients
- DCDS Home
- This Issue
-
Next Article
Attractors for a double time-delayed 2D-Navier-Stokes model
Biodiversity and vulnerability in a 3D mutualistic system
1. | Universidad Central del Ecuador, Ciudadela Universitaria, Av. América S/N, Quito, Ecuador |
2. | Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Calle Tarfia s/n, 41012-Seville, Spain |
3. | Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Fac. de Matemáticas, Univ. de Sevilla, C/. Tarfia s/n, 41012 - Sevilla |
References:
[1] |
Proc. Natl Acad. Sci. USA, 100 (2003), 9383-9387.
doi: 10.1073/pnas.1633576100. |
[2] |
Science, 312 (2006), 431-433.
doi: 10.1126/science.1123412. |
[3] |
Annu. Rev. Ecol. Evol. Syst., 38 (2007), 567-593. Google Scholar |
[4] |
Nature, 458 (2009), 1018-1020.
doi: 10.1038/nature07950. |
[5] |
Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296. |
[6] |
J. Math. Biology, 16 (1982), 25-31.
doi: 10.1007/BF00275158. |
[7] |
The American Naturalist, 111 (1977), 135-143.
doi: 10.1086/283384. |
[8] |
The American Naturalist, 113 (1979), 261-275.
doi: 10.1086/283384. |
[9] |
Monatsch. Math., 98 (1984), 267-275.
doi: 10.1007/BF01540776. |
[10] |
Springer, New York, 1993
doi: 10.1007/b98869. |
[11] |
Nature, 478 (2011), 233-235.
doi: 10.1038/nature10433. |
[12] |
SIAM J. Appl. Math., 46 (1986), 856-874.
doi: 10.1137/0146052. |
[13] |
Nature (News and View), 458 (2009), 979-980.
doi: 10.1038/458979a. |
[14] |
World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
doi: 10.1142/9789812830548. |
[15] |
Physica A, 339 (2004), 609-620.
doi: 10.1016/j.physa.2004.03.067. |
show all references
References:
[1] |
Proc. Natl Acad. Sci. USA, 100 (2003), 9383-9387.
doi: 10.1073/pnas.1633576100. |
[2] |
Science, 312 (2006), 431-433.
doi: 10.1126/science.1123412. |
[3] |
Annu. Rev. Ecol. Evol. Syst., 38 (2007), 567-593. Google Scholar |
[4] |
Nature, 458 (2009), 1018-1020.
doi: 10.1038/nature07950. |
[5] |
Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296. |
[6] |
J. Math. Biology, 16 (1982), 25-31.
doi: 10.1007/BF00275158. |
[7] |
The American Naturalist, 111 (1977), 135-143.
doi: 10.1086/283384. |
[8] |
The American Naturalist, 113 (1979), 261-275.
doi: 10.1086/283384. |
[9] |
Monatsch. Math., 98 (1984), 267-275.
doi: 10.1007/BF01540776. |
[10] |
Springer, New York, 1993
doi: 10.1007/b98869. |
[11] |
Nature, 478 (2011), 233-235.
doi: 10.1038/nature10433. |
[12] |
SIAM J. Appl. Math., 46 (1986), 856-874.
doi: 10.1137/0146052. |
[13] |
Nature (News and View), 458 (2009), 979-980.
doi: 10.1038/458979a. |
[14] |
World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
doi: 10.1142/9789812830548. |
[15] |
Physica A, 339 (2004), 609-620.
doi: 10.1016/j.physa.2004.03.067. |
[1] |
Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227 |
[2] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[3] |
Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021048 |
[4] |
Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021052 |
[5] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[6] |
Yongming Luo, Athanasios Stylianou. On 3d dipolar Bose-Einstein condensates involving quantum fluctuations and three-body interactions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3455-3477. doi: 10.3934/dcdsb.2020239 |
[7] |
Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021078 |
[8] |
Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021041 |
[9] |
Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021059 |
[10] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[11] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[12] |
Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201 |
[13] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[14] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[15] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[16] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
[17] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[18] |
Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano. Dragging in mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 37-52. doi: 10.3934/nhm.2015.10.37 |
[19] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[20] |
Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]