\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic behaviour for prey-predator systems and logistic equations with unbounded time-dependent coefficients

Abstract / Introduction Related Papers Cited by
  • In this work we study the asymptotic behaviour of the following prey-predator system \begin{equation*} \left\{ \begin{split} &A'=\alpha f(t)A-\beta g(t)A^2-\gamma AP\\ &P'=\delta h(t)P-\lambda m(t)P^2+\mu AP, \end{split} \right. \end{equation*} where functions $f,g:\mathbb{R}\rightarrow\mathbb{R}$ are not necessarily bounded above. We also prove the existence of the pullback attractor and the permanence of solutions for any positive initial data and initial time, making a previous study of a logistic equation with unbounded terms, where one of them can be negative for a bounded interval of time. The analysis of a non-autonomous logistic equation with unbounded coefficients is also needed to ensure the permanence of the model.
    Mathematics Subject Classification: 92D15, 35B40, 37N25, 92D25, 34E99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Ahmad, Convergence and ultimate bounds of solutions of the nonautonomous Volterra-Lotka competition equations, J. Math. Anal. Appl., 127 (1987), 377-387.doi: 10.1016/0022-247X(87)90116-8.

    [2]

    J. Balbus and J. Mierczyński, Time-averaging and permanence in nonautonomous competitive systems of PDE's via Vance-Coddington estiamtes, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1407-1425.doi: 10.3934/dcdsb.2012.17.1407.

    [3]

    T. A. Burton and V. Hutson, Permanence for nonautonomous predator-prey systems, Differential Integral Equations, 4 (1991), 1269-1280.

    [4]

    T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Analysis, 72 (2010), 1967-1976.doi: 10.1016/j.na.2009.09.037.

    [5]

    D. N. Cheban, Global Attractors of Non-Autonomous Dissipative Dynamical Systems, World Scientific Publishing Co. Pte. Ltd, 2004.doi: 10.1142/9789812563088.

    [6]

    V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Colloquium Publications, 49, America Mathematical Society, 2002.

    [7]

    B. D. Coleman, Nonautonomous logistic equations as models of the adjustment of populations to environmental change, Math. Biosci, 45 (1979), 159-173.doi: 10.1016/0025-5564(79)90057-9.

    [8]

    T. G. Hallam and C. E. Clarck, Nonautonomous logistic equations as models of populations in a deteriorating environment, J. Theoret. Biol., 93 (1981), 301-311.doi: 10.1016/0022-5193(81)90106-5.

    [9]

    J. Hale and P. Waltman, Persistence in infinite dimensional systems, SIAM J. Math. Anal., 9 (1989), 388-395.doi: 10.1137/0520025.

    [10]

    V. Hutson and K. Schmitt, Permanence in dynamical systems, Math. Biosci., 111 (1992), 1-71.doi: 10.1016/0025-5564(92)90078-B.

    [11]

    P. E. Kloeden, Pullback attractors of nonautonomous semidynamical system, Stochastics and Dynamics, 3 (2003), 101-112.doi: 10.1142/S0219493703000632.

    [12]

    J. A. Langa, J. C. Robinson, A. Rodríguez-Bernal and A. Suárez, Permanence and asymptotically stable complete trajectories for nonautonomous Lotka-Volterra models with diffusion, SIAM J. Math. Anal., 40 (2009), 2179-2216.doi: 10.1137/080721790.

    [13]

    J. A. Langa, J. C. Robinson and A. Suárez, Forwards and pullback behaviour of a non-autonomous Lotka-Volterra system, Nonlinearity, 16 (2003), 1277-1293.doi: 10.1088/0951-7715/16/4/305.

    [14]

    J. A. Langa, A. Rodríguez-Bernal and S. Suárez, On the long time behaviour of non-autonomous Lotka-Volterra models with diffusion via the sub-supertrajectory method, J. Differential Equations, 249 (2010), 414-445.doi: 10.1016/j.jde.2010.04.001.

    [15]

    M. N. Nkashama, Dynamics of logistic equations with non-autonomous bounded coefficients, Electron. J. Differential Equations, 2000 (2000), 8 pp. (electronic).

    [16]

    J. C. Robinson, Infinite-Dimensional Dynamical System. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Text in Applied Mathematics, 2001.doi: 10.1007/978-94-010-0732-0.

    [17]

    G. R. Sell, Nonautonomous differential equations and dynamical systems, Trans. Amer. Math. Soc., 127 (1967), 241-283.

    [18]

    J. Sugie, Y. Saito and M. Fan, Global asymptotic stability for predator-prey systems whose prey receives time-variation of the environment, Proc. Amer. Math. Soc., 139 (2011), 3475-3483.doi: 10.1090/S0002-9939-2011-11124-9.

    [19]

    R. R. Vance and E. A. Coddington, A nonautonomous model of population growth, J. Math. Biol., 27 (1989), 491-506.doi: 10.1007/BF00288430.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(52) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return