October  2014, 34(10): 4127-4137. doi: 10.3934/dcds.2014.34.4127

Asymptotic behaviour for prey-predator systems and logistic equations with unbounded time-dependent coefficients

1. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Calle Tarfia s/n, 41012-Seville, Spain

2. 

Departamento de Matemática y Mecánica, I.I.M.A.S - U.N.A.M., Apdo. Postal 20-726, 01000 México D. F., Mexico

Received  September 2013 Revised  October 2013 Published  April 2014

In this work we study the asymptotic behaviour of the following prey-predator system \begin{equation*} \left\{ \begin{split} &A'=\alpha f(t)A-\beta g(t)A^2-\gamma AP\\ &P'=\delta h(t)P-\lambda m(t)P^2+\mu AP, \end{split} \right. \end{equation*} where functions $f,g:\mathbb{R}\rightarrow\mathbb{R}$ are not necessarily bounded above. We also prove the existence of the pullback attractor and the permanence of solutions for any positive initial data and initial time, making a previous study of a logistic equation with unbounded terms, where one of them can be negative for a bounded interval of time. The analysis of a non-autonomous logistic equation with unbounded coefficients is also needed to ensure the permanence of the model.
Citation: Juan C. Jara, Felipe Rivero. Asymptotic behaviour for prey-predator systems and logistic equations with unbounded time-dependent coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4127-4137. doi: 10.3934/dcds.2014.34.4127
References:
[1]

S. Ahmad, Convergence and ultimate bounds of solutions of the nonautonomous Volterra-Lotka competition equations,, J. Math. Anal. Appl., 127 (1987), 377.  doi: 10.1016/0022-247X(87)90116-8.  Google Scholar

[2]

J. Balbus and J. Mierczyński, Time-averaging and permanence in nonautonomous competitive systems of PDE's via Vance-Coddington estiamtes,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1407.  doi: 10.3934/dcdsb.2012.17.1407.  Google Scholar

[3]

T. A. Burton and V. Hutson, Permanence for nonautonomous predator-prey systems,, Differential Integral Equations, 4 (1991), 1269.   Google Scholar

[4]

T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes,, Nonlinear Analysis, 72 (2010), 1967.  doi: 10.1016/j.na.2009.09.037.  Google Scholar

[5]

D. N. Cheban, Global Attractors of Non-Autonomous Dissipative Dynamical Systems,, World Scientific Publishing Co. Pte. Ltd, (2004).  doi: 10.1142/9789812563088.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, Colloquium Publications, (2002).   Google Scholar

[7]

B. D. Coleman, Nonautonomous logistic equations as models of the adjustment of populations to environmental change,, Math. Biosci, 45 (1979), 159.  doi: 10.1016/0025-5564(79)90057-9.  Google Scholar

[8]

T. G. Hallam and C. E. Clarck, Nonautonomous logistic equations as models of populations in a deteriorating environment,, J. Theoret. Biol., 93 (1981), 301.  doi: 10.1016/0022-5193(81)90106-5.  Google Scholar

[9]

J. Hale and P. Waltman, Persistence in infinite dimensional systems,, SIAM J. Math. Anal., 9 (1989), 388.  doi: 10.1137/0520025.  Google Scholar

[10]

V. Hutson and K. Schmitt, Permanence in dynamical systems,, Math. Biosci., 111 (1992), 1.  doi: 10.1016/0025-5564(92)90078-B.  Google Scholar

[11]

P. E. Kloeden, Pullback attractors of nonautonomous semidynamical system,, Stochastics and Dynamics, 3 (2003), 101.  doi: 10.1142/S0219493703000632.  Google Scholar

[12]

J. A. Langa, J. C. Robinson, A. Rodríguez-Bernal and A. Suárez, Permanence and asymptotically stable complete trajectories for nonautonomous Lotka-Volterra models with diffusion,, SIAM J. Math. Anal., 40 (2009), 2179.  doi: 10.1137/080721790.  Google Scholar

[13]

J. A. Langa, J. C. Robinson and A. Suárez, Forwards and pullback behaviour of a non-autonomous Lotka-Volterra system,, Nonlinearity, 16 (2003), 1277.  doi: 10.1088/0951-7715/16/4/305.  Google Scholar

[14]

J. A. Langa, A. Rodríguez-Bernal and S. Suárez, On the long time behaviour of non-autonomous Lotka-Volterra models with diffusion via the sub-supertrajectory method,, J. Differential Equations, 249 (2010), 414.  doi: 10.1016/j.jde.2010.04.001.  Google Scholar

[15]

M. N. Nkashama, Dynamics of logistic equations with non-autonomous bounded coefficients,, Electron. J. Differential Equations, 2000 (2000).   Google Scholar

[16]

J. C. Robinson, Infinite-Dimensional Dynamical System. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,, Cambridge Text in Applied Mathematics, (2001).  doi: 10.1007/978-94-010-0732-0.  Google Scholar

[17]

G. R. Sell, Nonautonomous differential equations and dynamical systems,, Trans. Amer. Math. Soc., 127 (1967), 241.   Google Scholar

[18]

J. Sugie, Y. Saito and M. Fan, Global asymptotic stability for predator-prey systems whose prey receives time-variation of the environment,, Proc. Amer. Math. Soc., 139 (2011), 3475.  doi: 10.1090/S0002-9939-2011-11124-9.  Google Scholar

[19]

R. R. Vance and E. A. Coddington, A nonautonomous model of population growth,, J. Math. Biol., 27 (1989), 491.  doi: 10.1007/BF00288430.  Google Scholar

show all references

References:
[1]

S. Ahmad, Convergence and ultimate bounds of solutions of the nonautonomous Volterra-Lotka competition equations,, J. Math. Anal. Appl., 127 (1987), 377.  doi: 10.1016/0022-247X(87)90116-8.  Google Scholar

[2]

J. Balbus and J. Mierczyński, Time-averaging and permanence in nonautonomous competitive systems of PDE's via Vance-Coddington estiamtes,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1407.  doi: 10.3934/dcdsb.2012.17.1407.  Google Scholar

[3]

T. A. Burton and V. Hutson, Permanence for nonautonomous predator-prey systems,, Differential Integral Equations, 4 (1991), 1269.   Google Scholar

[4]

T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes,, Nonlinear Analysis, 72 (2010), 1967.  doi: 10.1016/j.na.2009.09.037.  Google Scholar

[5]

D. N. Cheban, Global Attractors of Non-Autonomous Dissipative Dynamical Systems,, World Scientific Publishing Co. Pte. Ltd, (2004).  doi: 10.1142/9789812563088.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, Colloquium Publications, (2002).   Google Scholar

[7]

B. D. Coleman, Nonautonomous logistic equations as models of the adjustment of populations to environmental change,, Math. Biosci, 45 (1979), 159.  doi: 10.1016/0025-5564(79)90057-9.  Google Scholar

[8]

T. G. Hallam and C. E. Clarck, Nonautonomous logistic equations as models of populations in a deteriorating environment,, J. Theoret. Biol., 93 (1981), 301.  doi: 10.1016/0022-5193(81)90106-5.  Google Scholar

[9]

J. Hale and P. Waltman, Persistence in infinite dimensional systems,, SIAM J. Math. Anal., 9 (1989), 388.  doi: 10.1137/0520025.  Google Scholar

[10]

V. Hutson and K. Schmitt, Permanence in dynamical systems,, Math. Biosci., 111 (1992), 1.  doi: 10.1016/0025-5564(92)90078-B.  Google Scholar

[11]

P. E. Kloeden, Pullback attractors of nonautonomous semidynamical system,, Stochastics and Dynamics, 3 (2003), 101.  doi: 10.1142/S0219493703000632.  Google Scholar

[12]

J. A. Langa, J. C. Robinson, A. Rodríguez-Bernal and A. Suárez, Permanence and asymptotically stable complete trajectories for nonautonomous Lotka-Volterra models with diffusion,, SIAM J. Math. Anal., 40 (2009), 2179.  doi: 10.1137/080721790.  Google Scholar

[13]

J. A. Langa, J. C. Robinson and A. Suárez, Forwards and pullback behaviour of a non-autonomous Lotka-Volterra system,, Nonlinearity, 16 (2003), 1277.  doi: 10.1088/0951-7715/16/4/305.  Google Scholar

[14]

J. A. Langa, A. Rodríguez-Bernal and S. Suárez, On the long time behaviour of non-autonomous Lotka-Volterra models with diffusion via the sub-supertrajectory method,, J. Differential Equations, 249 (2010), 414.  doi: 10.1016/j.jde.2010.04.001.  Google Scholar

[15]

M. N. Nkashama, Dynamics of logistic equations with non-autonomous bounded coefficients,, Electron. J. Differential Equations, 2000 (2000).   Google Scholar

[16]

J. C. Robinson, Infinite-Dimensional Dynamical System. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,, Cambridge Text in Applied Mathematics, (2001).  doi: 10.1007/978-94-010-0732-0.  Google Scholar

[17]

G. R. Sell, Nonautonomous differential equations and dynamical systems,, Trans. Amer. Math. Soc., 127 (1967), 241.   Google Scholar

[18]

J. Sugie, Y. Saito and M. Fan, Global asymptotic stability for predator-prey systems whose prey receives time-variation of the environment,, Proc. Amer. Math. Soc., 139 (2011), 3475.  doi: 10.1090/S0002-9939-2011-11124-9.  Google Scholar

[19]

R. R. Vance and E. A. Coddington, A nonautonomous model of population growth,, J. Math. Biol., 27 (1989), 491.  doi: 10.1007/BF00288430.  Google Scholar

[1]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[2]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[3]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[4]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[5]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[6]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[7]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[8]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[9]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[10]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[11]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[12]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[13]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[14]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[15]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[16]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[17]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[18]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[19]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[20]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]