October  2014, 34(10): 4155-4182. doi: 10.3934/dcds.2014.34.4155

Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term

1. 

Kyiv National Taras Shevchenko University, 01033-Kyiv, Ukraine

2. 

Institute for Applied System Analysis, National Technical University of Ukraine "KPI", Kyiv, Ukraine

3. 

Centro de Investigación Operativa, Universidad Miguel Hernández de Elche, Avda. de la Universidad, s/n, 03202 Elche

Received  September 2012 Revised  January 2013 Published  April 2014

In this paper we study the structure of the global attractor for a reaction-diffusion equation in which uniqueness of the Cauchy problem is not guarantied. We prove that the global attractor can be characterized using either the unstable manifold of the set of stationary points or the stable one but considering in this last case only solutions in the set of bounded complete trajectories.
Citation: Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155
References:
[1]

M. Anguiano, T. Caraballo, J. Real and J. Valero, Pullback attractors for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term and without uniqueness of solutions,, Discrete Contin. Dyn. Syst., 14 (2010), 307.  doi: 10.3934/dcdsb.2010.14.307.  Google Scholar

[2]

J. M. Arrieta, A. Rodríguez-Bernal and J. Valero, Dynamics of a reaction-diffusion equation with a discontinuous nonlinearity,, Internat. J. Bifur. Chaos, 16 (2006), 2695.  doi: 10.1142/S0218127406016586.  Google Scholar

[3]

A. V. Babin and M. I. Vishik, Attracteurs maximaux dans les équations aux dérivées partielles,, in Nonlinear Partial Differential Equations and their Applications, (1985), 1983.   Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, Nauka, (1989).   Google Scholar

[5]

J. M. Ball, Global attractors for damped semilinear wave equations,, Discrete Contin. Dyn. Syst., 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[6]

P. Brunovsky and B. Fiedler, Connecting orbits in scalar reaction diffusion equations,, Dynamics Reported, 1 (1988), 57.   Google Scholar

[7]

T. Caraballo, P. Marín-Rubio and J. C.Robinson, A comparison between two theories for multivalued semiflows and their asymptotic behaviour,, Set-Valued Anal., 11 (2003), 297.  doi: 10.1023/A:1024422619616.  Google Scholar

[8]

V. V. Chepyzhov and M. I.Vishik, Attractors for Equations of Mathematical Physics,, American Mathematical Society, (2002).   Google Scholar

[9]

N. V. Gorban, O. V. Kapustyan and P. O. Kasyanov, Uniform trajectory attractor for non-autonomous reaction-diffusion equations with Carathodorys nonlinearity,, Nonlinear Analysis, 98 (2014), 13.  doi: 10.1016/j.na.2013.12.004.  Google Scholar

[10]

A. V. Kapustyan, Global attractors for nonautonomous reaction-diffusion equation,, Differential Equations, 38 (2002), 1467.  doi: 10.1023/A:1022378831393.  Google Scholar

[11]

O. V. Kapustyan, V. S. Melnik, J. Valero and V. V. Yasinsky, Global Attractors of Multivalued Dynamical Systems and Evolution Equations Without Uniqueness,, Naukova Dumka, (2008).   Google Scholar

[12]

A. V. Kapustyan, A. V. Pankov and J. Valero, On global attractors of multivalued semiflows generated by the 3D Bénard system,, Set-Valued Var. Anal., 20 (2012), 445.  doi: 10.1007/s11228-011-0197-5.  Google Scholar

[13]

O. V. Kapustyan, P. O. Kasyanov and J. Valero, Structure of uniform global attractor for general non-autonomous reaction-diffusion system,, in Continuous and Distributed Systems: Theory and Applications (eds. M. Z. Zgurovsky and V. A. Sadovninchniy), (2014), 163.  doi: 10.1007/978-3-319-03146-0_12.  Google Scholar

[14]

A. V. Kapustyan and J. Valero, On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems,, J. Math. Anal. Appl., 323 (2006), 614.  doi: 10.1016/j.jmaa.2005.10.042.  Google Scholar

[15]

A. V. Kapustyan and J. Valero, On the Kneser property for the complex Ginzburg-Landau equation and the Lotka-Volterra system with diffusion,, J. Math. Anal. Appl., 357 (2009), 254.  doi: 10.1016/j.jmaa.2009.04.010.  Google Scholar

[16]

O. V. Kapustyan and J. Valero, Comparison between trajectory and global attractors for evolution systems without uniqueness of solutions,, Internat. J. Bifur. Chaos, 20 (2010), 2723.  doi: 10.1142/S0218127410027313.  Google Scholar

[17]

P. O. Kasyanov, Multivalued dynamics of solutions of autonomous operator differential equations with pseudomonotone nonlinearity,, Math. Notes, 92 (2012), 205.  doi: 10.1134/S0001434612070231.  Google Scholar

[18]

P. O. Kasyanov, L. Toscano and N. V. Zadoianchuk, Regularity of weak solutions and their attractors for a parabolic feedback control problem,, Set-Valued Var. Anal., 21 (2013), 271.  doi: 10.1007/s11228-013-0233-8.  Google Scholar

[19]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, American Mathematical Society, (1988).   Google Scholar

[20]

D. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations,, J. Differential Equations, 59 (1985), 165.  doi: 10.1016/0022-0396(85)90153-6.  Google Scholar

[21]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires,, Gauthier-Villar, (1969).   Google Scholar

[22]

V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions,, Set-Valued Anal., 6 (1998), 83.  doi: 10.1023/A:1008608431399.  Google Scholar

[23]

C. Rocha, Examples of attractors in scalar reaction-diffusion equations,, J. Differential Equations, 73 (1988), 178.  doi: 10.1016/0022-0396(88)90124-6.  Google Scholar

[24]

C. Rocha, Properties of the attractor of a scalar parabolic PDE,, J. Dynamics Differential Equations, 3 (1991), 575.  doi: 10.1007/BF01049100.  Google Scholar

[25]

C. Rocha and B. Fiedler, Heteroclinic orbits of semilinear parabolic equations,, J. Differential. Equations, 125 (1996), 239.  doi: 10.1006/jdeq.1996.0031.  Google Scholar

[26]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Springer, (2002).   Google Scholar

[27]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997).   Google Scholar

[28]

E. Zeidler, Nonlinear Functional Analysis and Its Applications II,, Springer, (1990).  doi: 10.1007/978-1-4612-4838-5.  Google Scholar

[29]

M. Z. Zgurovsky, P. O. Kasyanov, O. V. Kapustyan, J. Valero and J. V. Zadoianchuk, Evolution Inclusions and Variation Inequalities for Earth Data Processing III. Long-Time Behavior of Evolution Inclusions Solutions in Earth Data Analysis,, Series: Advances in Mechanics and Mathematics, (2012).   Google Scholar

show all references

References:
[1]

M. Anguiano, T. Caraballo, J. Real and J. Valero, Pullback attractors for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term and without uniqueness of solutions,, Discrete Contin. Dyn. Syst., 14 (2010), 307.  doi: 10.3934/dcdsb.2010.14.307.  Google Scholar

[2]

J. M. Arrieta, A. Rodríguez-Bernal and J. Valero, Dynamics of a reaction-diffusion equation with a discontinuous nonlinearity,, Internat. J. Bifur. Chaos, 16 (2006), 2695.  doi: 10.1142/S0218127406016586.  Google Scholar

[3]

A. V. Babin and M. I. Vishik, Attracteurs maximaux dans les équations aux dérivées partielles,, in Nonlinear Partial Differential Equations and their Applications, (1985), 1983.   Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, Nauka, (1989).   Google Scholar

[5]

J. M. Ball, Global attractors for damped semilinear wave equations,, Discrete Contin. Dyn. Syst., 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[6]

P. Brunovsky and B. Fiedler, Connecting orbits in scalar reaction diffusion equations,, Dynamics Reported, 1 (1988), 57.   Google Scholar

[7]

T. Caraballo, P. Marín-Rubio and J. C.Robinson, A comparison between two theories for multivalued semiflows and their asymptotic behaviour,, Set-Valued Anal., 11 (2003), 297.  doi: 10.1023/A:1024422619616.  Google Scholar

[8]

V. V. Chepyzhov and M. I.Vishik, Attractors for Equations of Mathematical Physics,, American Mathematical Society, (2002).   Google Scholar

[9]

N. V. Gorban, O. V. Kapustyan and P. O. Kasyanov, Uniform trajectory attractor for non-autonomous reaction-diffusion equations with Carathodorys nonlinearity,, Nonlinear Analysis, 98 (2014), 13.  doi: 10.1016/j.na.2013.12.004.  Google Scholar

[10]

A. V. Kapustyan, Global attractors for nonautonomous reaction-diffusion equation,, Differential Equations, 38 (2002), 1467.  doi: 10.1023/A:1022378831393.  Google Scholar

[11]

O. V. Kapustyan, V. S. Melnik, J. Valero and V. V. Yasinsky, Global Attractors of Multivalued Dynamical Systems and Evolution Equations Without Uniqueness,, Naukova Dumka, (2008).   Google Scholar

[12]

A. V. Kapustyan, A. V. Pankov and J. Valero, On global attractors of multivalued semiflows generated by the 3D Bénard system,, Set-Valued Var. Anal., 20 (2012), 445.  doi: 10.1007/s11228-011-0197-5.  Google Scholar

[13]

O. V. Kapustyan, P. O. Kasyanov and J. Valero, Structure of uniform global attractor for general non-autonomous reaction-diffusion system,, in Continuous and Distributed Systems: Theory and Applications (eds. M. Z. Zgurovsky and V. A. Sadovninchniy), (2014), 163.  doi: 10.1007/978-3-319-03146-0_12.  Google Scholar

[14]

A. V. Kapustyan and J. Valero, On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems,, J. Math. Anal. Appl., 323 (2006), 614.  doi: 10.1016/j.jmaa.2005.10.042.  Google Scholar

[15]

A. V. Kapustyan and J. Valero, On the Kneser property for the complex Ginzburg-Landau equation and the Lotka-Volterra system with diffusion,, J. Math. Anal. Appl., 357 (2009), 254.  doi: 10.1016/j.jmaa.2009.04.010.  Google Scholar

[16]

O. V. Kapustyan and J. Valero, Comparison between trajectory and global attractors for evolution systems without uniqueness of solutions,, Internat. J. Bifur. Chaos, 20 (2010), 2723.  doi: 10.1142/S0218127410027313.  Google Scholar

[17]

P. O. Kasyanov, Multivalued dynamics of solutions of autonomous operator differential equations with pseudomonotone nonlinearity,, Math. Notes, 92 (2012), 205.  doi: 10.1134/S0001434612070231.  Google Scholar

[18]

P. O. Kasyanov, L. Toscano and N. V. Zadoianchuk, Regularity of weak solutions and their attractors for a parabolic feedback control problem,, Set-Valued Var. Anal., 21 (2013), 271.  doi: 10.1007/s11228-013-0233-8.  Google Scholar

[19]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, American Mathematical Society, (1988).   Google Scholar

[20]

D. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations,, J. Differential Equations, 59 (1985), 165.  doi: 10.1016/0022-0396(85)90153-6.  Google Scholar

[21]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires,, Gauthier-Villar, (1969).   Google Scholar

[22]

V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions,, Set-Valued Anal., 6 (1998), 83.  doi: 10.1023/A:1008608431399.  Google Scholar

[23]

C. Rocha, Examples of attractors in scalar reaction-diffusion equations,, J. Differential Equations, 73 (1988), 178.  doi: 10.1016/0022-0396(88)90124-6.  Google Scholar

[24]

C. Rocha, Properties of the attractor of a scalar parabolic PDE,, J. Dynamics Differential Equations, 3 (1991), 575.  doi: 10.1007/BF01049100.  Google Scholar

[25]

C. Rocha and B. Fiedler, Heteroclinic orbits of semilinear parabolic equations,, J. Differential. Equations, 125 (1996), 239.  doi: 10.1006/jdeq.1996.0031.  Google Scholar

[26]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Springer, (2002).   Google Scholar

[27]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997).   Google Scholar

[28]

E. Zeidler, Nonlinear Functional Analysis and Its Applications II,, Springer, (1990).  doi: 10.1007/978-1-4612-4838-5.  Google Scholar

[29]

M. Z. Zgurovsky, P. O. Kasyanov, O. V. Kapustyan, J. Valero and J. V. Zadoianchuk, Evolution Inclusions and Variation Inequalities for Earth Data Processing III. Long-Time Behavior of Evolution Inclusions Solutions in Earth Data Analysis,, Series: Advances in Mechanics and Mathematics, (2012).   Google Scholar

[1]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[2]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[3]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[4]

Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246

[5]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-21. doi: 10.3934/dcdss.2020083

[6]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[7]

Tibor Krisztin. The unstable set of zero and the global attractor for delayed monotone positive feedback. Conference Publications, 2001, 2001 (Special) : 229-240. doi: 10.3934/proc.2001.2001.229

[8]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[9]

Hua Nie, Sze-Bi Hsu, Feng-Bin Wang. Global dynamics of a reaction-diffusion system with intraguild predation and internal storage. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019194

[10]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

[11]

Linfang Liu, Xianlong Fu, Yuncheng You. Pullback attractor in $H^{1}$ for nonautonomous stochastic reaction-diffusion equations on $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3629-3651. doi: 10.3934/dcdsb.2017143

[12]

Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35

[13]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[14]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[15]

Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087

[16]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

[17]

Boris Andreianov, Halima Labani. Preconditioning operators and $L^\infty$ attractor for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2179-2199. doi: 10.3934/cpaa.2012.11.2179

[18]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[19]

María Anguiano, P.E. Kloeden. Asymptotic behaviour of the nonautonomous SIR equations with diffusion. Communications on Pure & Applied Analysis, 2014, 13 (1) : 157-173. doi: 10.3934/cpaa.2014.13.157

[20]

María Anguiano, Tomás Caraballo, José Real, José Valero. Pullback attractors for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term and without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 307-326. doi: 10.3934/dcdsb.2010.14.307

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (17)

[Back to Top]