October  2014, 34(10): 4183-4210. doi: 10.3934/dcds.2014.34.4183

Robust null controllability for heat equations with unknown switching control mode

1. 

School of Mathematics, Sichuan University, Chengdu 610064, China

2. 

BCAM - Basque Center for Applied Mathematics, Mazarredo, 14, E-48009 Bilbao-Basque Country, Spain

Received  June 2012 Revised  August 2012 Published  April 2014

We analyze the null controllability for heat equations in the presence of switching controls. The switching pattern is a priori unknown so that the control has to be designed in a robust manner, based only on the past dynamics, so to fulfill the final control requirement, regardless of what the future dynamics is. We prove that such a robust control strategy actually exists when the switching controllers are located on two non trivial open subsets of the domain where the heat process evolves. Our strategy to construct these robust controls is based on earlier works by Lebeau and Robbiano on the null controllability of the heat equation. It is relevant to emphasize that our result is specific to the heat equation as an extension of a property of finite-dimensional systems that we fully characterize but that it may not hold for wave-like equations.
Citation: Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183
References:
[1]

Y. Chitour and M. Sigalotti, On the stabilization of persistently excited linear systems,, SIAM J. Control Optim., 48 (2010), 4032.  doi: 10.1137/080737812.  Google Scholar

[2]

H. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension,, Arch. Rat. Mech. Anal., 43 (1971), 272.   Google Scholar

[3]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing-up semilinear heat equations,, Annales Inst. Henri Poincaré, 17 (2000), 583.  doi: 10.1016/S0294-1449(00)00117-7.  Google Scholar

[4]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations,, Lecture Notes Series, (1996).   Google Scholar

[5]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur,, Comm. Partial Differential Equations, 20 (1995), 335.  doi: 10.1080/03605309508821097.  Google Scholar

[6]

G. Lebeau and E. Zuazua, Null controllability of a system of linear thermoelasticity,, Arch. Rational Mech. Anal., 141 (1998), 297.  doi: 10.1007/s002050050078.  Google Scholar

[7]

Q. Lü, Bang-Bang principle of time optimal controls and null controllability of fractional order parabolic equations,, Acta Math. Sin. (Engl. Ser.), 26 (2010), 2377.  doi: 10.1007/s10114-010-9051-1.  Google Scholar

[8]

Q. Lü, A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators,, ESAIM Control Optim. Calc. Var., 19 (2013), 255.  doi: 10.1051/cocv/2012008.  Google Scholar

[9]

Q. Lü and G. Wang, On the existence of time optimal controls with constraints of the rectangular type for heat equations,, SIAM J. Control Optim., 49 (2011), 1124.  doi: 10.1137/10081277X.  Google Scholar

[10]

P. Martinez and J. Vancostenoble, Stabilisation et contrôle intermittent de l'équation des ondes,, C. R. Acad. Sci. Paris Sér. I Math, 218 (2005), 851.  doi: 10.1016/S0764-4442(01)02128-0.  Google Scholar

[11]

L. Miller, Controllability cost of conservative systems: Resolvent condition and transmutation,, J. Funct. Anal., 218 (2005), 425.  doi: 10.1016/j.jfa.2004.02.001.  Google Scholar

[12]

L. Miller, On the controllability of anomalous diffusions generated by the fractional laplacian,, Math. Control Signals Systems, 18 (2006), 260.  doi: 10.1007/s00498-006-0003-3.  Google Scholar

[13]

Yu. Netrusov and Yu. Safarov, Weyl asymptotic formula for the Laplacian on domains with rough boundaries,, Commun. Math. Phys., 253 (2005), 481.  doi: 10.1007/s00220-004-1158-8.  Google Scholar

[14]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations,, Studies in Appl. Math., 52 (1973), 189.   Google Scholar

[15]

R. Shorten, F. Wirth, O. Mason, K. Wulff and Ch. King, Stability criteria for switched and hybrid systems,, SIAM Rev., 49 (2007), 545.  doi: 10.1137/05063516X.  Google Scholar

[16]

G. Wang, $L^\infty$-null controllability for the heat equation and its consequences for the time optimal control problem,, SIAM J. Control Optim., 47 (2008), 1701.  doi: 10.1137/060678191.  Google Scholar

[17]

E. Zuazua, Controllability and Observability of Partial Differential Equations: Some results and open problems,, in Handbook of Differential Equations: Evolutionary Differential Equations, (2006), 527.  doi: 10.1016/S1874-5717(07)80010-7.  Google Scholar

[18]

E. Zuazua, Switching control,, J. Eur. Math. Soc., 13 (2011), 85.  doi: 10.4171/JEMS/245.  Google Scholar

show all references

References:
[1]

Y. Chitour and M. Sigalotti, On the stabilization of persistently excited linear systems,, SIAM J. Control Optim., 48 (2010), 4032.  doi: 10.1137/080737812.  Google Scholar

[2]

H. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension,, Arch. Rat. Mech. Anal., 43 (1971), 272.   Google Scholar

[3]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing-up semilinear heat equations,, Annales Inst. Henri Poincaré, 17 (2000), 583.  doi: 10.1016/S0294-1449(00)00117-7.  Google Scholar

[4]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations,, Lecture Notes Series, (1996).   Google Scholar

[5]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur,, Comm. Partial Differential Equations, 20 (1995), 335.  doi: 10.1080/03605309508821097.  Google Scholar

[6]

G. Lebeau and E. Zuazua, Null controllability of a system of linear thermoelasticity,, Arch. Rational Mech. Anal., 141 (1998), 297.  doi: 10.1007/s002050050078.  Google Scholar

[7]

Q. Lü, Bang-Bang principle of time optimal controls and null controllability of fractional order parabolic equations,, Acta Math. Sin. (Engl. Ser.), 26 (2010), 2377.  doi: 10.1007/s10114-010-9051-1.  Google Scholar

[8]

Q. Lü, A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators,, ESAIM Control Optim. Calc. Var., 19 (2013), 255.  doi: 10.1051/cocv/2012008.  Google Scholar

[9]

Q. Lü and G. Wang, On the existence of time optimal controls with constraints of the rectangular type for heat equations,, SIAM J. Control Optim., 49 (2011), 1124.  doi: 10.1137/10081277X.  Google Scholar

[10]

P. Martinez and J. Vancostenoble, Stabilisation et contrôle intermittent de l'équation des ondes,, C. R. Acad. Sci. Paris Sér. I Math, 218 (2005), 851.  doi: 10.1016/S0764-4442(01)02128-0.  Google Scholar

[11]

L. Miller, Controllability cost of conservative systems: Resolvent condition and transmutation,, J. Funct. Anal., 218 (2005), 425.  doi: 10.1016/j.jfa.2004.02.001.  Google Scholar

[12]

L. Miller, On the controllability of anomalous diffusions generated by the fractional laplacian,, Math. Control Signals Systems, 18 (2006), 260.  doi: 10.1007/s00498-006-0003-3.  Google Scholar

[13]

Yu. Netrusov and Yu. Safarov, Weyl asymptotic formula for the Laplacian on domains with rough boundaries,, Commun. Math. Phys., 253 (2005), 481.  doi: 10.1007/s00220-004-1158-8.  Google Scholar

[14]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations,, Studies in Appl. Math., 52 (1973), 189.   Google Scholar

[15]

R. Shorten, F. Wirth, O. Mason, K. Wulff and Ch. King, Stability criteria for switched and hybrid systems,, SIAM Rev., 49 (2007), 545.  doi: 10.1137/05063516X.  Google Scholar

[16]

G. Wang, $L^\infty$-null controllability for the heat equation and its consequences for the time optimal control problem,, SIAM J. Control Optim., 47 (2008), 1701.  doi: 10.1137/060678191.  Google Scholar

[17]

E. Zuazua, Controllability and Observability of Partial Differential Equations: Some results and open problems,, in Handbook of Differential Equations: Evolutionary Differential Equations, (2006), 527.  doi: 10.1016/S1874-5717(07)80010-7.  Google Scholar

[18]

E. Zuazua, Switching control,, J. Eur. Math. Soc., 13 (2011), 85.  doi: 10.4171/JEMS/245.  Google Scholar

[1]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[2]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control & Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[3]

Shirshendu Chowdhury, Debanjana Mitra, Michael Renardy. Null controllability of the incompressible Stokes equations in a 2-D channel using normal boundary control. Evolution Equations & Control Theory, 2018, 7 (3) : 447-463. doi: 10.3934/eect.2018022

[4]

Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control & Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217

[5]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[6]

Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019031

[7]

Enrique Fernández-Cara, Luz de Teresa. Null controllability of a cascade system of parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 699-714. doi: 10.3934/dcds.2004.11.699

[8]

Ping Lin. Feedback controllability for blowup points of semilinear heat equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1425-1434. doi: 10.3934/dcdsb.2017068

[9]

Víctor Hernández-Santamaría, Luz de Teresa. Robust Stackelberg controllability for linear and semilinear heat equations. Evolution Equations & Control Theory, 2018, 7 (2) : 247-273. doi: 10.3934/eect.2018012

[10]

Dario Pighin, Enrique Zuazua. Controllability under positivity constraints of semilinear heat equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 935-964. doi: 10.3934/mcrf.2018041

[11]

Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure & Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953

[12]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[13]

Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639

[14]

Jonathan Touboul. Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control & Related Fields, 2012, 2 (4) : 429-455. doi: 10.3934/mcrf.2012.2.429

[15]

Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745

[16]

Jonathan Touboul. Erratum on: Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control & Related Fields, 2019, 9 (1) : 221-222. doi: 10.3934/mcrf.2019006

[17]

Piermarco Cannarsa, Genni Fragnelli, Dario Rocchetti. Null controllability of degenerate parabolic operators with drift. Networks & Heterogeneous Media, 2007, 2 (4) : 695-715. doi: 10.3934/nhm.2007.2.695

[18]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations & Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[19]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control & Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[20]

Debayan Maity. On the null controllability of the Lotka-Mckendrick system. Mathematical Control & Related Fields, 2019, 9 (4) : 719-728. doi: 10.3934/mcrf.2019048

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]