October  2014, 34(10): 4211-4222. doi: 10.3934/dcds.2014.34.4211

Invariant measures for non-autonomous dissipative dynamical systems

1. 

University of Warsaw, Institute of Applied Mathematics and Mechanics, Banacha 2, 02-097 Warsaw

2. 

Mathematics Institute, University of Warwick, Coventry, CV4 7AL., United Kingdom

Received  December 2008 Revised  November 2009 Published  April 2014

Given a non-autonomous process $U(\cdot,\cdot)$ on a complete separable metric space $X$ that has a pullback attractor $A(\cdot)$, we construct a family of invariant Borel probability measures $\{\mu_t\}_{t\in \mathbb{R}}$: the measures satisfy ${\rm supp }\,{\mu_t}\subset A(t)$ for all $t\in \mathbb{R}$ and the invariance property $\mu_t(E)=\mu_\tau(U(t,\tau)^{-1}E)$ for every Borel set $E\in X$. Our construction uses the generalised Banach limit. We then show that a Liouville-type equation holds for the evolution of $\mu_t$ under the process $U(\cdot,\cdot)$ generated by the ordinary differential equation $u_t=F(t,u)$ on a Banach space, and apply our theory to the non-autonomous 2D Navier--Stokes equations on unbounded domains satisfying a Poincaré inequality.
Citation: Grzegorz Łukaszewicz, James C. Robinson. Invariant measures for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4211-4222. doi: 10.3934/dcds.2014.34.4211
References:
[1]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems,, Nonlinear Anal., 64 (2006), 484.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[2]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains,, C. R. Math. Acad. Sci. Paris, 342 (2006), 263.  doi: 10.1016/j.crma.2005.12.015.  Google Scholar

[3]

T. Caraballo, P. E. Kloeden and J. Real, Invariant measures and statistical solutions of the globally modified Navier-Stokes equations,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 761.  doi: 10.3934/dcdsb.2008.10.761.  Google Scholar

[4]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, Springer, (2012).  doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[5]

M. Chekroun and N. E. Glatt-Holtz, Invariant measures for dissipative dynamical systems: Abstract results and applications,, Comm. Math. Phys., 316 (2012), 723.  doi: 10.1007/s00220-012-1515-y.  Google Scholar

[6]

C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence,, Cambridge University Press, (2001).  doi: 10.1017/CBO9780511546754.  Google Scholar

[7]

P. E. Kloeden, P. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations,, Commun. Pure Appl. Anal., 8 (2009), 785.  doi: 10.3934/cpaa.2009.8.785.  Google Scholar

[8]

G. Łukaszewicz, Pullback attractors and statistical solutions for 2-D Navier-Stokes equations,, Discrete Continu. Dyn. Syst. Ser. B, 9 (2008), 643.  doi: 10.3934/dcdsb.2008.9.643.  Google Scholar

[9]

G. Łukaszewicz, J. Real and J. C. Robinson, Invariant measures for dissipative systems and generalised banach limits,, J. Dynam. Differential Equations, 23 (2011), 225.  doi: 10.1007/s10884-011-9213-6.  Google Scholar

[10]

V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations,, Princeton University Press, (1960).   Google Scholar

[11]

J. C. Robinson, Infinite-Dimensional Dynamical Systems,, Cambridge University Press, (2001).  doi: 10.1007/978-94-010-0732-0.  Google Scholar

[12]

R. Rosa, The global attractor for the 2 D Navier-Stokes flow on some unbounded domains,, Nonlinear Anal., 32 (1998), 71.  doi: 10.1016/S0362-546X(97)00453-7.  Google Scholar

[13]

R. Temam, Navier-Stokes equations, Theory and Numerical Analysis,, 2nd. ed., (1979).   Google Scholar

[14]

A. M. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes: With Applications to Statistics,, Springer, (2000).   Google Scholar

[15]

X. Wang, Upper semi-continuity of stationary statistical properties of dissipative systems,, Discrete Contin. Dyn. Syst., 23 (2009), 521.  doi: 10.3934/dcds.2009.23.521.  Google Scholar

show all references

References:
[1]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems,, Nonlinear Anal., 64 (2006), 484.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[2]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains,, C. R. Math. Acad. Sci. Paris, 342 (2006), 263.  doi: 10.1016/j.crma.2005.12.015.  Google Scholar

[3]

T. Caraballo, P. E. Kloeden and J. Real, Invariant measures and statistical solutions of the globally modified Navier-Stokes equations,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 761.  doi: 10.3934/dcdsb.2008.10.761.  Google Scholar

[4]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, Springer, (2012).  doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[5]

M. Chekroun and N. E. Glatt-Holtz, Invariant measures for dissipative dynamical systems: Abstract results and applications,, Comm. Math. Phys., 316 (2012), 723.  doi: 10.1007/s00220-012-1515-y.  Google Scholar

[6]

C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence,, Cambridge University Press, (2001).  doi: 10.1017/CBO9780511546754.  Google Scholar

[7]

P. E. Kloeden, P. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations,, Commun. Pure Appl. Anal., 8 (2009), 785.  doi: 10.3934/cpaa.2009.8.785.  Google Scholar

[8]

G. Łukaszewicz, Pullback attractors and statistical solutions for 2-D Navier-Stokes equations,, Discrete Continu. Dyn. Syst. Ser. B, 9 (2008), 643.  doi: 10.3934/dcdsb.2008.9.643.  Google Scholar

[9]

G. Łukaszewicz, J. Real and J. C. Robinson, Invariant measures for dissipative systems and generalised banach limits,, J. Dynam. Differential Equations, 23 (2011), 225.  doi: 10.1007/s10884-011-9213-6.  Google Scholar

[10]

V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations,, Princeton University Press, (1960).   Google Scholar

[11]

J. C. Robinson, Infinite-Dimensional Dynamical Systems,, Cambridge University Press, (2001).  doi: 10.1007/978-94-010-0732-0.  Google Scholar

[12]

R. Rosa, The global attractor for the 2 D Navier-Stokes flow on some unbounded domains,, Nonlinear Anal., 32 (1998), 71.  doi: 10.1016/S0362-546X(97)00453-7.  Google Scholar

[13]

R. Temam, Navier-Stokes equations, Theory and Numerical Analysis,, 2nd. ed., (1979).   Google Scholar

[14]

A. M. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes: With Applications to Statistics,, Springer, (2000).   Google Scholar

[15]

X. Wang, Upper semi-continuity of stationary statistical properties of dissipative systems,, Discrete Contin. Dyn. Syst., 23 (2009), 521.  doi: 10.3934/dcds.2009.23.521.  Google Scholar

[1]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[2]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[4]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[5]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[6]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[7]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[8]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[9]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[10]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[11]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[16]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[17]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[18]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[19]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[20]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]