Citation: |
[1] |
H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. |
[2] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. |
[3] |
M. Bonforte and J.L. Vázquez, Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations, Adv. Math., 223 (2010), 529-578.doi: 10.1016/j.aim.2009.08.021. |
[4] |
H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Éspaces de Hilbert, North-Holland Math. Studies, 5, North-Holland, Amsterdam, 1973. |
[5] |
F. Brezzi and G. Gilardi, FEM Mathematics, in Finite Element Handbook (Ed. H. Kardestuncer), Part I: Chapt. 1: Functional Analysis, 1.1-1.5; Chapt. 2: Functional Spaces, 2.1-2.11; Chapt. 3: Partial Differential Equations, 3.1-3.6, McGraw-Hill Book Co., New York, 1987. |
[6] |
G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245.doi: 10.1007/BF00254827. |
[7] |
C. Cavaterra, C. G. Gal, M. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamic boundary conditions, Nonlinear Anal., 72 (2010), 2375-2399.doi: 10.1016/j.na.2009.11.002. |
[8] |
L. Cherfils, S. Gatti and A. Miranville, Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potentials, J. Math. Anal. Appl., 343 (2008), 557-566; Corrigendum, J. Math. Anal. Appl., 348 (2008), 1029-1030.doi: 10.1016/j.jmaa.2008.01.077. |
[9] |
L. Cherfils and A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 54 (2009), 89-115.doi: 10.1007/s10492-009-0008-6. |
[10] |
P. Colli and Ph. Laurençot, Weak solutions to the Penrose-Fife phase field model for a class of admissible heat flux laws, Phys. D, 111 (1998), 311-334.doi: 10.1016/S0167-2789(97)80018-8. |
[11] |
M. Conti, S. Gatti and A. Miranville, Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions, Discrete Contin. Dyn. Syst. S, 5 (2012), 485-505.doi: 10.3934/dcdss.2012.5.485. |
[12] |
E. Feireisl and G. Schimperna, Large time behaviour of solutions to Penrose-Fife phase change models, Math. Methods Appl. Sci., 28 (2005), 2117-2132.doi: 10.1002/mma.659. |
[13] |
H. P. Fischer, P. Maass and W. Dieterich, Novel surface modes in spinodal decomposition, Phys. Rev. Letters, 79 (1997), 893-896.doi: 10.1103/PhysRevLett.79.893. |
[14] |
H. P. Fischer, P. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows, Europhys. Letters, 42 (1998), 49-54. |
[15] |
H. P. Fischer, J. Reinhard, W. Dieterich, J.-F. Gouyet, P. Maass, A. Majhofer and D. Reinel, Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall, J. Chem. Phys., 108 (1998), 3028-3037.doi: 10.1063/1.475690. |
[16] |
C. G. Gal and M. Grasselli, On the asymptotic behavior of the Caginalp system with dynamic boundary conditions, Commun. Pure Appl. Anal., 8 (2009), 689-710.doi: 10.3934/cpaa.2009.8.689. |
[17] |
G. Gilardi, A. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 8 (2009), 881-912.doi: 10.3934/cpaa.2009.8.881. |
[18] |
G. Gilardi, A. Miranville and G. Schimperna, Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Chin. Ann. Math. Ser. B, 31 (2010), 679-712.doi: 10.1007/s11401-010-0602-7. |
[19] |
G. R. Goldstein, A. Miranville and G. Schimperna, A Cahn-Hilliard model in a domain with non-permeable walls, Phys. D, 240 (2011), 754-766.doi: 10.1016/j.physd.2010.12.007. |
[20] |
M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98.doi: 10.3934/dcds.2010.28.67. |
[21] |
M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential, Z. Anal. Anwend., 25 (2006), 51-72.doi: 10.4171/ZAA/1277. |
[22] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI, 1988. |
[23] |
W. Horn, J. Sprekels and S. Zheng, Global existence of smooth solutions to the Penrose-Fife model for Ising ferromagnets, Adv. Math. Sci. Appl., 6 (1996), 227-241. |
[24] |
A. Ito, N. Kenmochi and M. Kubo, Non-isothermal phase transition models with Neumann boundary conditions, Nonlinear Anal., 53 (2003), 977-996.doi: 10.1016/S0362-546X(03)00032-4. |
[25] |
A. Ito and N. Kenmochi, Inertial set for a phase transition model of Penrose-Fife type, Adv. Math. Sci. Appl., 10 (2000), 353-374. |
[26] |
A. Ito, N. Kenmochi and M. Niezgódka, Phase separation model of Penrose-Fife type with Signorini boundary condition, Adv. Math. Sci. Appl., 17 (2007), 337-356. |
[27] |
R. Kenzler, F. Eurich, P. Maass, B. Rinn, J. Schropp, E. Bohl and W. Dieterich, Phase separation in confined geometries: Solving the Cahn-Hilliard equation with generic boundary conditions, Comput. Phys. Commun., 133 (2001), 139-157.doi: 10.1016/S0010-4655(00)00159-4. |
[28] |
Ph. Laurençot, Solutions to a Penrose-Fife model of phase-field type, J. Math. Anal. Appl., 185 (1994), 262-274.doi: 10.1006/jmaa.1994.1247. |
[29] |
Ph. Laurençot, Weak solutions to a Penrose-Fife model for phase transitions, Adv. Math. Sci. Appl., 5 (1995), 117-138. |
[30] |
J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, (French) Dunod, Gauthier-Villars, Paris, 1969. |
[31] |
A. Miranville, Some Mathematical Models in Phase Transition, Lecture Notes, Ravello, 2009.doi: 10.3934/dcdss.2014.7.271. |
[32] |
A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), 545-582.doi: 10.1002/mma.464. |
[33] |
A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 275-310.doi: 10.3934/dcds.2010.28.275. |
[34] |
D. Mugnolo and S. Romanelli, Dirichlet forms for general Wentzell boundary conditions, analytic semigroups, and cosine operator functions, Electron. J. Diff. Equ., 2006, 20 pp. (electronic). |
[35] |
O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D, 43 (1990), 44-62.doi: 10.1016/0167-2789(90)90015-H. |
[36] |
E. Rocca and G. Schimperna, Universal attractor for some singular phase transition systems, Phys. D, 192 (2004), 279-307.doi: 10.1016/j.physd.2004.01.024. |
[37] |
E. Rocca and G. Schimperna, Universal attractor for a Penrose-Fife system with special heat flux law, Mediterr. J. Math., 1 (2004), 109-121.doi: 10.1007/s00009-004-0007-5. |
[38] |
G. Savaré and A. Visintin, Variational convergence of nonlinear diffusion equations: Applications to concentrated capacity problems with change of phase, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 8 (1997), 49-89. |
[39] |
G. Schimperna, Weak solution to a phase-field transmission problem in a concentrated capacity, Math. Methods Appl. Sci., 22 (1999), 1235-1254.doi: 10.1002/(SICI)1099-1476(19990925)22:14<1235::AID-MMA82>3.0.CO;2-W. |
[40] |
G. Schimperna, Global and exponential attractors for the Penrose-Fife system, Math. Models Methods Appl. Sci., 19 (2009), 969-991.doi: 10.1142/S0218202509003681. |
[41] |
G. Schimperna, A. Segatti and S. Zelik, Asymptotic uniform boundedness of energy solutions to the Penrose-Fife model, J. Evol. Equ., 12 (2012), 863-890.doi: 10.1007/s00028-012-0159-x. |
[42] |
G. Schimperna, A. Segatti, and S. Zelik, On a singular heat equation with dynamic boundary conditions, submitted, arXiv:1302.5026, (2013). |
[43] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.doi: 10.1007/BF01762360. |
[44] |
J. Sprekels and S. Zheng, Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions, J. Math. Anal. Appl., 176 (1993), 200-223.doi: 10.1006/jmaa.1993.1209. |
[45] |
J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations, Oxford Lecture Series in Mathematics and its Applications, 33, Oxford University Press, Oxford, 2006.doi: 10.1093/acprof:oso/9780199202973.001.0001. |