October  2014, 34(10): 4343-4370. doi: 10.3934/dcds.2014.34.4343

The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China

2. 

Institut für Mathematik, Goethe Universität, D-60054 Frankfurt am Main

Received  May 2012 Revised  October 2012 Published  April 2014

The existence of a uniform attractor in a space of higher regularity is proved for the multi-valued process associated with the nonautonomous reaction-diffusion equation on an unbounded domain with delays for which the uniqueness of solutions need not hold. A new method for checking the asymptotical upper-semicompactness of the solutions is used.
Citation: Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343
References:
[1]

T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems,, Set-Valued Anal., 11 (2003), 153.  doi: 10.1023/A:1022902802385.  Google Scholar

[2]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays,, J. Differential Equations, 205 (2004), 271.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[3]

T. Caraballo, P. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays,, J. Differential Equations, 208 (2005), 9.  doi: 10.1016/j.jde.2003.09.008.  Google Scholar

[4]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness,, Discrete Contin. Dyn. Syst., 21 (2008), 415.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[5]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Global attractors for a non-autonomous integro-differential equation in materials with memory,, Nonlinear Anal., 73 (2010), 183.  doi: 10.1016/j.na.2010.03.012.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, American Mathematical Society, (2002).   Google Scholar

[7]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer-Verlag, (1993).   Google Scholar

[8]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors,, Proc. Roy. Soc. London, 463 (2007), 163.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[9]

P. E. Kloeden and B. Schmalfuss, Asymptotical behaviour of nonautonomous difference inclusions,, Syst. Cont. Lett., 33 (1998), 275.  doi: 10.1016/S0167-6911(97)00107-2.  Google Scholar

[10]

D. S. Li and P. E. Kloeden, On the dynamics of nonautonomous periodic general dynamical systems and differential inclusions,, J. Differential Equations, 224 (2006), 1.  doi: 10.1016/j.jde.2005.07.012.  Google Scholar

[11]

D. S. Li, Y. J. Wang and S. Y. Wang, On the dynamics of non-autonomous general dynamical systems and differential inclusions,, Set-Valued Anal., 16 (2008), 651.  doi: 10.1007/s11228-007-0054-8.  Google Scholar

[12]

S. S. Lu, H. Q. Wu and C. K. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces,, Discrete Contin. Dyn. Syst., 13 (2005), 701.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[13]

Q. F. Ma, S. H. Wang and C. K. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications,, Indiana Univ. Math. J., 51 (2002), 1541.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[14]

J. Mallet-Paret and G. R. Sell, Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions,, J. Differential Equations, 125 (1996), 385.  doi: 10.1006/jdeq.1996.0036.  Google Scholar

[15]

J. Mallet-Paret and G. R. Sell, The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay,, J. Differential Equations, 125 (1996), 441.  doi: 10.1006/jdeq.1996.0037.  Google Scholar

[16]

P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delay in continuous and sub-linear operators,, Discrete Contin. Dyn. Syst., 26 (2010), 989.  doi: 10.3934/dcds.2010.26.989.  Google Scholar

[17]

F. Morillas and J. Valero, Attractors for reaction-diffusion equations in $\mathbbR^N$ with continuous nonlinearity,, Asymptotic Anal., 44 (2005), 111.   Google Scholar

[18]

R. Temam, Infinite Dimensional Dynamical System in Mechanics and Physics,, Second edition, (1997).   Google Scholar

[19]

M. I. Vishik and V. V. Chepyzhov, Trajectory and global attractors of the three-dimensional Navier-Stokes systems,, Math. Notes, 71 (2002), 177.  doi: 10.1023/A:1014190629738.  Google Scholar

[20]

Y. J. Wang and S. F. Zhou, Kernel sections and uniform attractors of multi-valued semiprocesses,, J. Differential Equations, 232 (2007), 573.  doi: 10.1016/j.jde.2006.07.005.  Google Scholar

[21]

Y. J. Wang and S. F. Zhou, Kernel sections of multi-valued processes with application to the nonlinear reaction-diffusion equations in unbounded domains,, Quart. Applied Math., 67 (2009), 343.   Google Scholar

[22]

Y. J. Wang, On the upper semicontinuity of pullback attractors for multi-valued processes,, Quart. Applied Math., 71 (2013), 369.  doi: 10.1090/S0033-569X-2013-01306-1.  Google Scholar

show all references

References:
[1]

T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems,, Set-Valued Anal., 11 (2003), 153.  doi: 10.1023/A:1022902802385.  Google Scholar

[2]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays,, J. Differential Equations, 205 (2004), 271.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[3]

T. Caraballo, P. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays,, J. Differential Equations, 208 (2005), 9.  doi: 10.1016/j.jde.2003.09.008.  Google Scholar

[4]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness,, Discrete Contin. Dyn. Syst., 21 (2008), 415.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[5]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Global attractors for a non-autonomous integro-differential equation in materials with memory,, Nonlinear Anal., 73 (2010), 183.  doi: 10.1016/j.na.2010.03.012.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, American Mathematical Society, (2002).   Google Scholar

[7]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer-Verlag, (1993).   Google Scholar

[8]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors,, Proc. Roy. Soc. London, 463 (2007), 163.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[9]

P. E. Kloeden and B. Schmalfuss, Asymptotical behaviour of nonautonomous difference inclusions,, Syst. Cont. Lett., 33 (1998), 275.  doi: 10.1016/S0167-6911(97)00107-2.  Google Scholar

[10]

D. S. Li and P. E. Kloeden, On the dynamics of nonautonomous periodic general dynamical systems and differential inclusions,, J. Differential Equations, 224 (2006), 1.  doi: 10.1016/j.jde.2005.07.012.  Google Scholar

[11]

D. S. Li, Y. J. Wang and S. Y. Wang, On the dynamics of non-autonomous general dynamical systems and differential inclusions,, Set-Valued Anal., 16 (2008), 651.  doi: 10.1007/s11228-007-0054-8.  Google Scholar

[12]

S. S. Lu, H. Q. Wu and C. K. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces,, Discrete Contin. Dyn. Syst., 13 (2005), 701.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[13]

Q. F. Ma, S. H. Wang and C. K. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications,, Indiana Univ. Math. J., 51 (2002), 1541.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[14]

J. Mallet-Paret and G. R. Sell, Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions,, J. Differential Equations, 125 (1996), 385.  doi: 10.1006/jdeq.1996.0036.  Google Scholar

[15]

J. Mallet-Paret and G. R. Sell, The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay,, J. Differential Equations, 125 (1996), 441.  doi: 10.1006/jdeq.1996.0037.  Google Scholar

[16]

P. Marín-Rubio and J. Real, Pullback attractors for 2D-Navier-Stokes equations with delay in continuous and sub-linear operators,, Discrete Contin. Dyn. Syst., 26 (2010), 989.  doi: 10.3934/dcds.2010.26.989.  Google Scholar

[17]

F. Morillas and J. Valero, Attractors for reaction-diffusion equations in $\mathbbR^N$ with continuous nonlinearity,, Asymptotic Anal., 44 (2005), 111.   Google Scholar

[18]

R. Temam, Infinite Dimensional Dynamical System in Mechanics and Physics,, Second edition, (1997).   Google Scholar

[19]

M. I. Vishik and V. V. Chepyzhov, Trajectory and global attractors of the three-dimensional Navier-Stokes systems,, Math. Notes, 71 (2002), 177.  doi: 10.1023/A:1014190629738.  Google Scholar

[20]

Y. J. Wang and S. F. Zhou, Kernel sections and uniform attractors of multi-valued semiprocesses,, J. Differential Equations, 232 (2007), 573.  doi: 10.1016/j.jde.2006.07.005.  Google Scholar

[21]

Y. J. Wang and S. F. Zhou, Kernel sections of multi-valued processes with application to the nonlinear reaction-diffusion equations in unbounded domains,, Quart. Applied Math., 67 (2009), 343.   Google Scholar

[22]

Y. J. Wang, On the upper semicontinuity of pullback attractors for multi-valued processes,, Quart. Applied Math., 71 (2013), 369.  doi: 10.1090/S0033-569X-2013-01306-1.  Google Scholar

[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[5]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[6]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[7]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[8]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[9]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[10]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[11]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[12]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[13]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[14]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[15]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[16]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[17]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[18]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[19]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[20]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]