February  2014, 34(2): 437-459. doi: 10.3934/dcds.2014.34.437

Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in $\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}$

1. 

School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China

2. 

School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, China

Received  February 2013 Revised  March 2013 Published  August 2013

In this paper, we study the Cauchy problem of the 3-dimensional (3D) generalized Navier-Stokes equations (gNS) in the Triebel-Lizorkin spaces $\dot{F}^{-\alpha,r}_{q_\alpha}$ with $(\alpha,r)\in(1,\frac{5}{4})\times[1,\infty]$ and $q_\alpha=\frac{3}{\alpha-1}$. Our work establishes a dichotomy of well-posedness and ill-posedness depending on $r$. Specifically, by combining the new endpoint bilinear estimates in $L^{\!q_\alpha}_x\!L^2_T$ and $L^\infty_T\dot{F}^{-\alpha,1}_{q_\alpha}$ and characterization of the Triebel-Lizorkin spaces via fractional semigroup, we prove well-posedness of the gNS in $\dot{F}^{-\alpha,r}_{q_\alpha}$ for $r\in[1,2]$. Meanwhile, for any $r\in(2,\infty]$, we show that the solution to the gNS can develop norm inflation in the sense that arbitrarily small initial data in $\dot{F}^{-\alpha,r}_{q_\alpha}$ can produce arbitrarily large solution after arbitrarily short time.
Citation: Chao Deng, Xiaohua Yao. Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in $\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 437-459. doi: 10.3934/dcds.2014.34.437
References:
[1]

J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D,, J. Funct. Anal., 255 (2008), 2233.  doi: 10.1016/j.jfa.2008.07.008.  Google Scholar

[2]

C. Calderón, Existence of weak solutions for the Navier-Stokes equations with initial data in $L^p$,, Trans. Amer. Math. Soc., 318 (1990), 179.  doi: 10.2307/2001234.  Google Scholar

[3]

M. Cannone, "Ondelettes, Paraproduits et Navier-Stokes,", Dierot Editeur, (1995).   Google Scholar

[4]

M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations,, in, (2004), 161.   Google Scholar

[5]

A. Cheskidov and M. Dai, Norm inflation for generalized Navier-Stokes equations,, , ().   Google Scholar

[6]

A. Cheskidov and R. Shvydkoy, Ill-posedness for subcritical hyperdissipative Navier-Stokes equations in the largest critical spaces,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.4765332.  Google Scholar

[7]

C. Deng and X. Yao, Ill-posedness of the incompressible Navier-Stokes equations in Triebel-Lizorkin spaces $\dotF^{-1,q>2}_{\infty}(\mathbbR^3)$,, , ().   Google Scholar

[8]

Q. Deng, Y. Ding and X. Yao, Characterizations of Hardy spaces associated to higher order elliptic operators,, J. Funct. Anal., 263 (2012), 604.  doi: 10.1016/j.jfa.2012.05.001.  Google Scholar

[9]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Arch. Rat. Mech. Anal., 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[10]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $\mathbbR^m$, with applications to weak solutions,, Math. Z., 187 (1984), 471.  doi: 10.1007/BF01174182.  Google Scholar

[11]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Adv. Math., 157 (2001), 22.  doi: 10.1006/aima.2000.1937.  Google Scholar

[12]

P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem,", Chapman & Hall/CRC Research Notes in Mathematics, 431 (2002).  doi: 10.1201/9781420035674.  Google Scholar

[13]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[14]

P. Li and Z. C. Zhai, Well-posedness and regularity of generalized Navier-Stokes equations in some critical $Q$-spaces,, J. Funct. Anal., 259 (2010), 2457.  doi: 10.1016/j.jfa.2010.07.013.  Google Scholar

[15]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", (French) Dunod; Gauthier-Villars, (1969).   Google Scholar

[16]

R. May, Rôle de l'espace de Besov $B^{-1,\infty}_{\infty}$ dans le contrôle de l'explosion éventuelle en temps fini des solutions régulières équations de Navier-Stokes,, C. R. Acad. Sci. Paris., 336 (2003), 731.  doi: 10.1016/S1631-073X(03)00155-9.  Google Scholar

[17]

C. Miao, B. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations,, Nonlinear Anal., 68 (2008), 461.  doi: 10.1016/j.na.2006.11.011.  Google Scholar

[18]

S. Montgomery-Smith, Finite time blow up for a Navier-Stokes like equation,, Proc. Amer. Math. Soc., 129 (2001), 3025.  doi: 10.1090/S0002-9939-01-06062-2.  Google Scholar

[19]

F. Planchon, "Solutions globales et comportement asymptotique pour les équations de Navier-Stokes,", Thèse, (1996).   Google Scholar

[20]

E. M. Stein, "Harmonic Analysis: real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton Mathematical Series, 43 (1993).   Google Scholar

[21]

H. Triebel, "Theory of Function Spaces. II,", Monographs in Mathematics, 84 (1992).  doi: 10.1007/978-3-0346-0419-2.  Google Scholar

[22]

J. H. Wu, Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces,, Comm. Math. Phys., 263 (2006), 803.  doi: 10.1007/s00220-005-1483-6.  Google Scholar

[23]

J. Xiao, Homothetic variant of fractional Sobolev space with application to Navier-Stokes system,, Dynamic of PDE, 4 (2007), 227.   Google Scholar

[24]

X. Yu and Z. Zhai, Well-posedness for fractional Navier-Stokes equations in the largest critical spaces $\dotB^{1-2\beta}_{\infty,\infty}(\mathbbR^n),$, Math. Meth. Appl. Sci., 35 (2012), 676.   Google Scholar

[25]

T. Yoneda, Ill-posedness of the 3D Navier-Stokes equations in a generalized Besov space near $BMO^{-1}$,, J. Funct. Anal., 258 (2010), 3376.  doi: 10.1016/j.jfa.2010.02.005.  Google Scholar

show all references

References:
[1]

J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D,, J. Funct. Anal., 255 (2008), 2233.  doi: 10.1016/j.jfa.2008.07.008.  Google Scholar

[2]

C. Calderón, Existence of weak solutions for the Navier-Stokes equations with initial data in $L^p$,, Trans. Amer. Math. Soc., 318 (1990), 179.  doi: 10.2307/2001234.  Google Scholar

[3]

M. Cannone, "Ondelettes, Paraproduits et Navier-Stokes,", Dierot Editeur, (1995).   Google Scholar

[4]

M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations,, in, (2004), 161.   Google Scholar

[5]

A. Cheskidov and M. Dai, Norm inflation for generalized Navier-Stokes equations,, , ().   Google Scholar

[6]

A. Cheskidov and R. Shvydkoy, Ill-posedness for subcritical hyperdissipative Navier-Stokes equations in the largest critical spaces,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.4765332.  Google Scholar

[7]

C. Deng and X. Yao, Ill-posedness of the incompressible Navier-Stokes equations in Triebel-Lizorkin spaces $\dotF^{-1,q>2}_{\infty}(\mathbbR^3)$,, , ().   Google Scholar

[8]

Q. Deng, Y. Ding and X. Yao, Characterizations of Hardy spaces associated to higher order elliptic operators,, J. Funct. Anal., 263 (2012), 604.  doi: 10.1016/j.jfa.2012.05.001.  Google Scholar

[9]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Arch. Rat. Mech. Anal., 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[10]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $\mathbbR^m$, with applications to weak solutions,, Math. Z., 187 (1984), 471.  doi: 10.1007/BF01174182.  Google Scholar

[11]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Adv. Math., 157 (2001), 22.  doi: 10.1006/aima.2000.1937.  Google Scholar

[12]

P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem,", Chapman & Hall/CRC Research Notes in Mathematics, 431 (2002).  doi: 10.1201/9781420035674.  Google Scholar

[13]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[14]

P. Li and Z. C. Zhai, Well-posedness and regularity of generalized Navier-Stokes equations in some critical $Q$-spaces,, J. Funct. Anal., 259 (2010), 2457.  doi: 10.1016/j.jfa.2010.07.013.  Google Scholar

[15]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", (French) Dunod; Gauthier-Villars, (1969).   Google Scholar

[16]

R. May, Rôle de l'espace de Besov $B^{-1,\infty}_{\infty}$ dans le contrôle de l'explosion éventuelle en temps fini des solutions régulières équations de Navier-Stokes,, C. R. Acad. Sci. Paris., 336 (2003), 731.  doi: 10.1016/S1631-073X(03)00155-9.  Google Scholar

[17]

C. Miao, B. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations,, Nonlinear Anal., 68 (2008), 461.  doi: 10.1016/j.na.2006.11.011.  Google Scholar

[18]

S. Montgomery-Smith, Finite time blow up for a Navier-Stokes like equation,, Proc. Amer. Math. Soc., 129 (2001), 3025.  doi: 10.1090/S0002-9939-01-06062-2.  Google Scholar

[19]

F. Planchon, "Solutions globales et comportement asymptotique pour les équations de Navier-Stokes,", Thèse, (1996).   Google Scholar

[20]

E. M. Stein, "Harmonic Analysis: real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton Mathematical Series, 43 (1993).   Google Scholar

[21]

H. Triebel, "Theory of Function Spaces. II,", Monographs in Mathematics, 84 (1992).  doi: 10.1007/978-3-0346-0419-2.  Google Scholar

[22]

J. H. Wu, Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces,, Comm. Math. Phys., 263 (2006), 803.  doi: 10.1007/s00220-005-1483-6.  Google Scholar

[23]

J. Xiao, Homothetic variant of fractional Sobolev space with application to Navier-Stokes system,, Dynamic of PDE, 4 (2007), 227.   Google Scholar

[24]

X. Yu and Z. Zhai, Well-posedness for fractional Navier-Stokes equations in the largest critical spaces $\dotB^{1-2\beta}_{\infty,\infty}(\mathbbR^n),$, Math. Meth. Appl. Sci., 35 (2012), 676.   Google Scholar

[25]

T. Yoneda, Ill-posedness of the 3D Navier-Stokes equations in a generalized Besov space near $BMO^{-1}$,, J. Funct. Anal., 258 (2010), 3376.  doi: 10.1016/j.jfa.2010.02.005.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[4]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[5]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[6]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[7]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[8]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[9]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[12]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[13]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[14]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[15]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[16]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[17]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[18]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[19]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[20]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]