February  2014, 34(2): 437-459. doi: 10.3934/dcds.2014.34.437

Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in $\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}$

1. 

School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China

2. 

School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, China

Received  February 2013 Revised  March 2013 Published  August 2013

In this paper, we study the Cauchy problem of the 3-dimensional (3D) generalized Navier-Stokes equations (gNS) in the Triebel-Lizorkin spaces $\dot{F}^{-\alpha,r}_{q_\alpha}$ with $(\alpha,r)\in(1,\frac{5}{4})\times[1,\infty]$ and $q_\alpha=\frac{3}{\alpha-1}$. Our work establishes a dichotomy of well-posedness and ill-posedness depending on $r$. Specifically, by combining the new endpoint bilinear estimates in $L^{\!q_\alpha}_x\!L^2_T$ and $L^\infty_T\dot{F}^{-\alpha,1}_{q_\alpha}$ and characterization of the Triebel-Lizorkin spaces via fractional semigroup, we prove well-posedness of the gNS in $\dot{F}^{-\alpha,r}_{q_\alpha}$ for $r\in[1,2]$. Meanwhile, for any $r\in(2,\infty]$, we show that the solution to the gNS can develop norm inflation in the sense that arbitrarily small initial data in $\dot{F}^{-\alpha,r}_{q_\alpha}$ can produce arbitrarily large solution after arbitrarily short time.
Citation: Chao Deng, Xiaohua Yao. Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in $\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 437-459. doi: 10.3934/dcds.2014.34.437
References:
[1]

J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D,, J. Funct. Anal., 255 (2008), 2233.  doi: 10.1016/j.jfa.2008.07.008.  Google Scholar

[2]

C. Calderón, Existence of weak solutions for the Navier-Stokes equations with initial data in $L^p$,, Trans. Amer. Math. Soc., 318 (1990), 179.  doi: 10.2307/2001234.  Google Scholar

[3]

M. Cannone, "Ondelettes, Paraproduits et Navier-Stokes,", Dierot Editeur, (1995).   Google Scholar

[4]

M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations,, in, (2004), 161.   Google Scholar

[5]

A. Cheskidov and M. Dai, Norm inflation for generalized Navier-Stokes equations,, , ().   Google Scholar

[6]

A. Cheskidov and R. Shvydkoy, Ill-posedness for subcritical hyperdissipative Navier-Stokes equations in the largest critical spaces,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.4765332.  Google Scholar

[7]

C. Deng and X. Yao, Ill-posedness of the incompressible Navier-Stokes equations in Triebel-Lizorkin spaces $\dotF^{-1,q>2}_{\infty}(\mathbbR^3)$,, , ().   Google Scholar

[8]

Q. Deng, Y. Ding and X. Yao, Characterizations of Hardy spaces associated to higher order elliptic operators,, J. Funct. Anal., 263 (2012), 604.  doi: 10.1016/j.jfa.2012.05.001.  Google Scholar

[9]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Arch. Rat. Mech. Anal., 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[10]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $\mathbbR^m$, with applications to weak solutions,, Math. Z., 187 (1984), 471.  doi: 10.1007/BF01174182.  Google Scholar

[11]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Adv. Math., 157 (2001), 22.  doi: 10.1006/aima.2000.1937.  Google Scholar

[12]

P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem,", Chapman & Hall/CRC Research Notes in Mathematics, 431 (2002).  doi: 10.1201/9781420035674.  Google Scholar

[13]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[14]

P. Li and Z. C. Zhai, Well-posedness and regularity of generalized Navier-Stokes equations in some critical $Q$-spaces,, J. Funct. Anal., 259 (2010), 2457.  doi: 10.1016/j.jfa.2010.07.013.  Google Scholar

[15]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", (French) Dunod; Gauthier-Villars, (1969).   Google Scholar

[16]

R. May, Rôle de l'espace de Besov $B^{-1,\infty}_{\infty}$ dans le contrôle de l'explosion éventuelle en temps fini des solutions régulières équations de Navier-Stokes,, C. R. Acad. Sci. Paris., 336 (2003), 731.  doi: 10.1016/S1631-073X(03)00155-9.  Google Scholar

[17]

C. Miao, B. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations,, Nonlinear Anal., 68 (2008), 461.  doi: 10.1016/j.na.2006.11.011.  Google Scholar

[18]

S. Montgomery-Smith, Finite time blow up for a Navier-Stokes like equation,, Proc. Amer. Math. Soc., 129 (2001), 3025.  doi: 10.1090/S0002-9939-01-06062-2.  Google Scholar

[19]

F. Planchon, "Solutions globales et comportement asymptotique pour les équations de Navier-Stokes,", Thèse, (1996).   Google Scholar

[20]

E. M. Stein, "Harmonic Analysis: real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton Mathematical Series, 43 (1993).   Google Scholar

[21]

H. Triebel, "Theory of Function Spaces. II,", Monographs in Mathematics, 84 (1992).  doi: 10.1007/978-3-0346-0419-2.  Google Scholar

[22]

J. H. Wu, Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces,, Comm. Math. Phys., 263 (2006), 803.  doi: 10.1007/s00220-005-1483-6.  Google Scholar

[23]

J. Xiao, Homothetic variant of fractional Sobolev space with application to Navier-Stokes system,, Dynamic of PDE, 4 (2007), 227.   Google Scholar

[24]

X. Yu and Z. Zhai, Well-posedness for fractional Navier-Stokes equations in the largest critical spaces $\dotB^{1-2\beta}_{\infty,\infty}(\mathbbR^n),$, Math. Meth. Appl. Sci., 35 (2012), 676.   Google Scholar

[25]

T. Yoneda, Ill-posedness of the 3D Navier-Stokes equations in a generalized Besov space near $BMO^{-1}$,, J. Funct. Anal., 258 (2010), 3376.  doi: 10.1016/j.jfa.2010.02.005.  Google Scholar

show all references

References:
[1]

J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D,, J. Funct. Anal., 255 (2008), 2233.  doi: 10.1016/j.jfa.2008.07.008.  Google Scholar

[2]

C. Calderón, Existence of weak solutions for the Navier-Stokes equations with initial data in $L^p$,, Trans. Amer. Math. Soc., 318 (1990), 179.  doi: 10.2307/2001234.  Google Scholar

[3]

M. Cannone, "Ondelettes, Paraproduits et Navier-Stokes,", Dierot Editeur, (1995).   Google Scholar

[4]

M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations,, in, (2004), 161.   Google Scholar

[5]

A. Cheskidov and M. Dai, Norm inflation for generalized Navier-Stokes equations,, , ().   Google Scholar

[6]

A. Cheskidov and R. Shvydkoy, Ill-posedness for subcritical hyperdissipative Navier-Stokes equations in the largest critical spaces,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.4765332.  Google Scholar

[7]

C. Deng and X. Yao, Ill-posedness of the incompressible Navier-Stokes equations in Triebel-Lizorkin spaces $\dotF^{-1,q>2}_{\infty}(\mathbbR^3)$,, , ().   Google Scholar

[8]

Q. Deng, Y. Ding and X. Yao, Characterizations of Hardy spaces associated to higher order elliptic operators,, J. Funct. Anal., 263 (2012), 604.  doi: 10.1016/j.jfa.2012.05.001.  Google Scholar

[9]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Arch. Rat. Mech. Anal., 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[10]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $\mathbbR^m$, with applications to weak solutions,, Math. Z., 187 (1984), 471.  doi: 10.1007/BF01174182.  Google Scholar

[11]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations,, Adv. Math., 157 (2001), 22.  doi: 10.1006/aima.2000.1937.  Google Scholar

[12]

P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem,", Chapman & Hall/CRC Research Notes in Mathematics, 431 (2002).  doi: 10.1201/9781420035674.  Google Scholar

[13]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[14]

P. Li and Z. C. Zhai, Well-posedness and regularity of generalized Navier-Stokes equations in some critical $Q$-spaces,, J. Funct. Anal., 259 (2010), 2457.  doi: 10.1016/j.jfa.2010.07.013.  Google Scholar

[15]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", (French) Dunod; Gauthier-Villars, (1969).   Google Scholar

[16]

R. May, Rôle de l'espace de Besov $B^{-1,\infty}_{\infty}$ dans le contrôle de l'explosion éventuelle en temps fini des solutions régulières équations de Navier-Stokes,, C. R. Acad. Sci. Paris., 336 (2003), 731.  doi: 10.1016/S1631-073X(03)00155-9.  Google Scholar

[17]

C. Miao, B. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations,, Nonlinear Anal., 68 (2008), 461.  doi: 10.1016/j.na.2006.11.011.  Google Scholar

[18]

S. Montgomery-Smith, Finite time blow up for a Navier-Stokes like equation,, Proc. Amer. Math. Soc., 129 (2001), 3025.  doi: 10.1090/S0002-9939-01-06062-2.  Google Scholar

[19]

F. Planchon, "Solutions globales et comportement asymptotique pour les équations de Navier-Stokes,", Thèse, (1996).   Google Scholar

[20]

E. M. Stein, "Harmonic Analysis: real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton Mathematical Series, 43 (1993).   Google Scholar

[21]

H. Triebel, "Theory of Function Spaces. II,", Monographs in Mathematics, 84 (1992).  doi: 10.1007/978-3-0346-0419-2.  Google Scholar

[22]

J. H. Wu, Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces,, Comm. Math. Phys., 263 (2006), 803.  doi: 10.1007/s00220-005-1483-6.  Google Scholar

[23]

J. Xiao, Homothetic variant of fractional Sobolev space with application to Navier-Stokes system,, Dynamic of PDE, 4 (2007), 227.   Google Scholar

[24]

X. Yu and Z. Zhai, Well-posedness for fractional Navier-Stokes equations in the largest critical spaces $\dotB^{1-2\beta}_{\infty,\infty}(\mathbbR^n),$, Math. Meth. Appl. Sci., 35 (2012), 676.   Google Scholar

[25]

T. Yoneda, Ill-posedness of the 3D Navier-Stokes equations in a generalized Besov space near $BMO^{-1}$,, J. Funct. Anal., 258 (2010), 3376.  doi: 10.1016/j.jfa.2010.02.005.  Google Scholar

[1]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[2]

Hi Jun Choe, Bataa Lkhagvasuren, Minsuk Yang. Wellposedness of the Keller-Segel Navier-Stokes equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2453-2464. doi: 10.3934/cpaa.2015.14.2453

[3]

Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081

[4]

Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517

[5]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[6]

Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143

[7]

Linglong Du, Haitao Wang. Pointwise wave behavior of the Navier-Stokes equations in half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1349-1363. doi: 10.3934/dcds.2018055

[8]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[9]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[10]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[11]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[12]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[13]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[14]

Weimin Peng, Yi Zhou. Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3845-3856. doi: 10.3934/dcds.2016.36.3845

[15]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[16]

Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315

[17]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[18]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[19]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[20]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]