November  2014, 34(11): 4389-4418. doi: 10.3934/dcds.2014.34.4389

Commensurable continued fractions

1. 

Institut de Mathématiques de Luminy (UMR6206 CNRS), 163 Avenue de Luminy, case 907, 13288 Marseille cedex 09, France

2. 

Department of Mathematics, Oregon State University, Corvallis, OR 97331, United States

Received  September 2013 Revised  February 2014 Published  May 2014

We compare two families of continued fractions algorithms, the symmetrized Rosen algorithm and the Veech algorithm. Each of these algorithms expands real numbers in terms of certain algebraic integers. We give explicit models of the natural extension of the maps associated with these algorithms; prove that these natural extensions are in fact conjugate to the first return map of the geodesic flow on a related surface; and, deduce that, up to a conjugacy, almost every real number has an infinite number of common approximants for both algorithms.
Citation: Pierre Arnoux, Thomas A. Schmidt. Commensurable continued fractions. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4389-4418. doi: 10.3934/dcds.2014.34.4389
References:
[1]

in Ergodic Theory (A Seminar), (eds. J. Moser, E. Phillips and S. Varadhan), Courant Inst. of Math. Sci. (Lect. Notes 110), 1975, New York.  Google Scholar

[2]

Bull. Amer. Math. Soc. (N.S.), 25 (1991), 229-334. doi: 10.1090/S0273-0979-1991-16076-3.  Google Scholar

[3]

(French) [Coding of the geodesic flow on the modular surface], Enseign. Math. (2), 40 (1994), 29-48.  Google Scholar

[4]

(French) [Continued fractions on Veech's surfaces], J. Anal. Math., 81 (2000), 35-64. doi: 10.1007/BF02788985.  Google Scholar

[5]

J. Mod. Dyn., 3 (2009), 611-629. doi: 10.3934/jmd.2009.3.611.  Google Scholar

[6]

Nonlinearity, 26 (2013), 711-726. doi: 10.1088/0951-7715/26/3/711.  Google Scholar

[7]

_______, Natural extensions for piecewise Möbius interval maps,, in preparation., ().   Google Scholar

[8]

Trans. Amer. Math. Soc., 352 (2000), 1277-1298. doi: 10.1090/S0002-9947-99-02442-3.  Google Scholar

[9]

Carus Mathematical Monographs, 29. Mathematical Association of America, Washington, DC, 2002.  Google Scholar

[10]

J. Eur. Math. Soc. (JEMS), 11 (2009), 1259-1283. doi: 10.4171/JEMS/181.  Google Scholar

[11]

Invent. Math., 125 (1996), 487-521. doi: 10.1007/s002220050084.  Google Scholar

[12]

Canad. Math. Bull., 39 (1996), 186-198. doi: 10.4153/CMB-1996-023-8.  Google Scholar

[13]

Trans. Amer. Math. Soc., 39 (1936), 299-314. doi: 10.1090/S0002-9947-1936-1501848-8.  Google Scholar

[14]

Duke Math. J., 123 (2004), 49-69. doi: 10.1215/S0012-7094-04-12312-8.  Google Scholar

[15]

Nonlinearity, 25 (2012), 2207-2243. doi: 10.1088/0951-7715/25/8/2207.  Google Scholar

[16]

in Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989), Oxford Sci. Publ., Oxford Univ. Press, New York, (1991), 71-91.  Google Scholar

[17]

J. Mod. Dyn., 2 (2008), 581-627. doi: 10.3934/jmd.2008.2.581.  Google Scholar

[18]

in Algorithms, fractals, and dynamics (Okayama/Kyoto, 1992), Plenum, New York, (1995), 179-191.  Google Scholar

[19]

Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499-530. Translation in (MR0160698) Amer. Math. Soc. Transl. Series 2, 39 (1964), 1-36.  Google Scholar

[20]

Duke Math. J., 21 (1954), 549-563.  Google Scholar

[21]

in Number theory with an emphasis on the Markoff spectrum, (eds. A. Pollington and W. Moran), Dekker, New York, 147 (1993), 227-238.  Google Scholar

[22]

J. London Math. Soc. (2), 31 (1985), 69-80. doi: 10.1112/jlms/s2-31.1.69.  Google Scholar

[23]

Math. Z., 220 (1995), 369-397. doi: 10.1007/BF02572621.  Google Scholar

[24]

Oxford: Clarendon Press, 1995.  Google Scholar

[25]

Inv. Math., 97 (1989), 553-583. doi: 10.1007/BF01388890.  Google Scholar

[26]

Geom. Funct. Anal., 2 (1992), 341-379. doi: 10.1007/BF01896876.  Google Scholar

show all references

References:
[1]

in Ergodic Theory (A Seminar), (eds. J. Moser, E. Phillips and S. Varadhan), Courant Inst. of Math. Sci. (Lect. Notes 110), 1975, New York.  Google Scholar

[2]

Bull. Amer. Math. Soc. (N.S.), 25 (1991), 229-334. doi: 10.1090/S0273-0979-1991-16076-3.  Google Scholar

[3]

(French) [Coding of the geodesic flow on the modular surface], Enseign. Math. (2), 40 (1994), 29-48.  Google Scholar

[4]

(French) [Continued fractions on Veech's surfaces], J. Anal. Math., 81 (2000), 35-64. doi: 10.1007/BF02788985.  Google Scholar

[5]

J. Mod. Dyn., 3 (2009), 611-629. doi: 10.3934/jmd.2009.3.611.  Google Scholar

[6]

Nonlinearity, 26 (2013), 711-726. doi: 10.1088/0951-7715/26/3/711.  Google Scholar

[7]

_______, Natural extensions for piecewise Möbius interval maps,, in preparation., ().   Google Scholar

[8]

Trans. Amer. Math. Soc., 352 (2000), 1277-1298. doi: 10.1090/S0002-9947-99-02442-3.  Google Scholar

[9]

Carus Mathematical Monographs, 29. Mathematical Association of America, Washington, DC, 2002.  Google Scholar

[10]

J. Eur. Math. Soc. (JEMS), 11 (2009), 1259-1283. doi: 10.4171/JEMS/181.  Google Scholar

[11]

Invent. Math., 125 (1996), 487-521. doi: 10.1007/s002220050084.  Google Scholar

[12]

Canad. Math. Bull., 39 (1996), 186-198. doi: 10.4153/CMB-1996-023-8.  Google Scholar

[13]

Trans. Amer. Math. Soc., 39 (1936), 299-314. doi: 10.1090/S0002-9947-1936-1501848-8.  Google Scholar

[14]

Duke Math. J., 123 (2004), 49-69. doi: 10.1215/S0012-7094-04-12312-8.  Google Scholar

[15]

Nonlinearity, 25 (2012), 2207-2243. doi: 10.1088/0951-7715/25/8/2207.  Google Scholar

[16]

in Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989), Oxford Sci. Publ., Oxford Univ. Press, New York, (1991), 71-91.  Google Scholar

[17]

J. Mod. Dyn., 2 (2008), 581-627. doi: 10.3934/jmd.2008.2.581.  Google Scholar

[18]

in Algorithms, fractals, and dynamics (Okayama/Kyoto, 1992), Plenum, New York, (1995), 179-191.  Google Scholar

[19]

Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499-530. Translation in (MR0160698) Amer. Math. Soc. Transl. Series 2, 39 (1964), 1-36.  Google Scholar

[20]

Duke Math. J., 21 (1954), 549-563.  Google Scholar

[21]

in Number theory with an emphasis on the Markoff spectrum, (eds. A. Pollington and W. Moran), Dekker, New York, 147 (1993), 227-238.  Google Scholar

[22]

J. London Math. Soc. (2), 31 (1985), 69-80. doi: 10.1112/jlms/s2-31.1.69.  Google Scholar

[23]

Math. Z., 220 (1995), 369-397. doi: 10.1007/BF02572621.  Google Scholar

[24]

Oxford: Clarendon Press, 1995.  Google Scholar

[25]

Inv. Math., 97 (1989), 553-583. doi: 10.1007/BF01388890.  Google Scholar

[26]

Geom. Funct. Anal., 2 (1992), 341-379. doi: 10.1007/BF01896876.  Google Scholar

[1]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[2]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390

[3]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[4]

Peter H. van der Kamp, David I. McLaren, G. R. W. Quispel. Generalised Manin transformations and QRT maps. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021009

[5]

Kiyoshi Igusa, Gordana Todorov. Picture groups and maximal green sequences. Electronic Research Archive, , () : -. doi: 10.3934/era.2021025

[6]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[7]

Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064

[8]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[9]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022

[10]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[11]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[12]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[13]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[14]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[15]

Fei Liu, Xiaokai Liu, Fang Wang. On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021057

[16]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[17]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[18]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[19]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[20]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]