-
Previous Article
Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids
- DCDS Home
- This Issue
-
Next Article
Polynomial stabilization of some dissipative hyperbolic systems
Commensurable continued fractions
1. | Institut de Mathématiques de Luminy (UMR6206 CNRS), 163 Avenue de Luminy, case 907, 13288 Marseille cedex 09, France |
2. | Department of Mathematics, Oregon State University, Corvallis, OR 97331, United States |
References:
[1] |
in Ergodic Theory (A Seminar), (eds. J. Moser, E. Phillips and S. Varadhan), Courant Inst. of Math. Sci. (Lect. Notes 110), 1975, New York. |
[2] |
Bull. Amer. Math. Soc. (N.S.), 25 (1991), 229-334.
doi: 10.1090/S0273-0979-1991-16076-3. |
[3] |
(French) [Coding of the geodesic flow on the modular surface], Enseign. Math. (2), 40 (1994), 29-48. |
[4] |
(French) [Continued fractions on Veech's surfaces], J. Anal. Math., 81 (2000), 35-64.
doi: 10.1007/BF02788985. |
[5] |
J. Mod. Dyn., 3 (2009), 611-629.
doi: 10.3934/jmd.2009.3.611. |
[6] |
Nonlinearity, 26 (2013), 711-726.
doi: 10.1088/0951-7715/26/3/711. |
[7] |
_______, Natural extensions for piecewise Möbius interval maps,, in preparation., (). Google Scholar |
[8] |
Trans. Amer. Math. Soc., 352 (2000), 1277-1298.
doi: 10.1090/S0002-9947-99-02442-3. |
[9] |
Carus Mathematical Monographs, 29. Mathematical Association of America, Washington, DC, 2002. |
[10] |
J. Eur. Math. Soc. (JEMS), 11 (2009), 1259-1283.
doi: 10.4171/JEMS/181. |
[11] |
Invent. Math., 125 (1996), 487-521.
doi: 10.1007/s002220050084. |
[12] |
Canad. Math. Bull., 39 (1996), 186-198.
doi: 10.4153/CMB-1996-023-8. |
[13] |
Trans. Amer. Math. Soc., 39 (1936), 299-314.
doi: 10.1090/S0002-9947-1936-1501848-8. |
[14] |
Duke Math. J., 123 (2004), 49-69.
doi: 10.1215/S0012-7094-04-12312-8. |
[15] |
Nonlinearity, 25 (2012), 2207-2243.
doi: 10.1088/0951-7715/25/8/2207. |
[16] |
in Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989), Oxford Sci. Publ., Oxford Univ. Press, New York, (1991), 71-91. |
[17] |
J. Mod. Dyn., 2 (2008), 581-627.
doi: 10.3934/jmd.2008.2.581. |
[18] |
in Algorithms, fractals, and dynamics (Okayama/Kyoto, 1992), Plenum, New York, (1995), 179-191. |
[19] |
Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499-530. Translation in (MR0160698) Amer. Math. Soc. Transl. Series 2, 39 (1964), 1-36. |
[20] |
Duke Math. J., 21 (1954), 549-563. |
[21] |
in Number theory with an emphasis on the Markoff spectrum, (eds. A. Pollington and W. Moran), Dekker, New York, 147 (1993), 227-238. |
[22] |
J. London Math. Soc. (2), 31 (1985), 69-80.
doi: 10.1112/jlms/s2-31.1.69. |
[23] |
Math. Z., 220 (1995), 369-397.
doi: 10.1007/BF02572621. |
[24] |
Oxford: Clarendon Press, 1995. |
[25] |
Inv. Math., 97 (1989), 553-583.
doi: 10.1007/BF01388890. |
[26] |
Geom. Funct. Anal., 2 (1992), 341-379.
doi: 10.1007/BF01896876. |
show all references
References:
[1] |
in Ergodic Theory (A Seminar), (eds. J. Moser, E. Phillips and S. Varadhan), Courant Inst. of Math. Sci. (Lect. Notes 110), 1975, New York. |
[2] |
Bull. Amer. Math. Soc. (N.S.), 25 (1991), 229-334.
doi: 10.1090/S0273-0979-1991-16076-3. |
[3] |
(French) [Coding of the geodesic flow on the modular surface], Enseign. Math. (2), 40 (1994), 29-48. |
[4] |
(French) [Continued fractions on Veech's surfaces], J. Anal. Math., 81 (2000), 35-64.
doi: 10.1007/BF02788985. |
[5] |
J. Mod. Dyn., 3 (2009), 611-629.
doi: 10.3934/jmd.2009.3.611. |
[6] |
Nonlinearity, 26 (2013), 711-726.
doi: 10.1088/0951-7715/26/3/711. |
[7] |
_______, Natural extensions for piecewise Möbius interval maps,, in preparation., (). Google Scholar |
[8] |
Trans. Amer. Math. Soc., 352 (2000), 1277-1298.
doi: 10.1090/S0002-9947-99-02442-3. |
[9] |
Carus Mathematical Monographs, 29. Mathematical Association of America, Washington, DC, 2002. |
[10] |
J. Eur. Math. Soc. (JEMS), 11 (2009), 1259-1283.
doi: 10.4171/JEMS/181. |
[11] |
Invent. Math., 125 (1996), 487-521.
doi: 10.1007/s002220050084. |
[12] |
Canad. Math. Bull., 39 (1996), 186-198.
doi: 10.4153/CMB-1996-023-8. |
[13] |
Trans. Amer. Math. Soc., 39 (1936), 299-314.
doi: 10.1090/S0002-9947-1936-1501848-8. |
[14] |
Duke Math. J., 123 (2004), 49-69.
doi: 10.1215/S0012-7094-04-12312-8. |
[15] |
Nonlinearity, 25 (2012), 2207-2243.
doi: 10.1088/0951-7715/25/8/2207. |
[16] |
in Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989), Oxford Sci. Publ., Oxford Univ. Press, New York, (1991), 71-91. |
[17] |
J. Mod. Dyn., 2 (2008), 581-627.
doi: 10.3934/jmd.2008.2.581. |
[18] |
in Algorithms, fractals, and dynamics (Okayama/Kyoto, 1992), Plenum, New York, (1995), 179-191. |
[19] |
Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499-530. Translation in (MR0160698) Amer. Math. Soc. Transl. Series 2, 39 (1964), 1-36. |
[20] |
Duke Math. J., 21 (1954), 549-563. |
[21] |
in Number theory with an emphasis on the Markoff spectrum, (eds. A. Pollington and W. Moran), Dekker, New York, 147 (1993), 227-238. |
[22] |
J. London Math. Soc. (2), 31 (1985), 69-80.
doi: 10.1112/jlms/s2-31.1.69. |
[23] |
Math. Z., 220 (1995), 369-397.
doi: 10.1007/BF02572621. |
[24] |
Oxford: Clarendon Press, 1995. |
[25] |
Inv. Math., 97 (1989), 553-583.
doi: 10.1007/BF01388890. |
[26] |
Geom. Funct. Anal., 2 (1992), 341-379.
doi: 10.1007/BF01896876. |
[1] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[2] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390 |
[3] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[4] |
Peter H. van der Kamp, David I. McLaren, G. R. W. Quispel. Generalised Manin transformations and QRT maps. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021009 |
[5] |
Kiyoshi Igusa, Gordana Todorov. Picture groups and maximal green sequences. Electronic Research Archive, , () : -. doi: 10.3934/era.2021025 |
[6] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[7] |
Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064 |
[8] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[9] |
Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022 |
[10] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[11] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[12] |
Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016 |
[13] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005 |
[14] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[15] |
Fei Liu, Xiaokai Liu, Fang Wang. On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021057 |
[16] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
[17] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[18] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[19] |
G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010 |
[20] |
Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]