November  2014, 34(11): 4389-4418. doi: 10.3934/dcds.2014.34.4389

Commensurable continued fractions

1. 

Institut de Mathématiques de Luminy (UMR6206 CNRS), 163 Avenue de Luminy, case 907, 13288 Marseille cedex 09, France

2. 

Department of Mathematics, Oregon State University, Corvallis, OR 97331, United States

Received  September 2013 Revised  February 2014 Published  May 2014

We compare two families of continued fractions algorithms, the symmetrized Rosen algorithm and the Veech algorithm. Each of these algorithms expands real numbers in terms of certain algebraic integers. We give explicit models of the natural extension of the maps associated with these algorithms; prove that these natural extensions are in fact conjugate to the first return map of the geodesic flow on a related surface; and, deduce that, up to a conjugacy, almost every real number has an infinite number of common approximants for both algorithms.
Citation: Pierre Arnoux, Thomas A. Schmidt. Commensurable continued fractions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4389-4418. doi: 10.3934/dcds.2014.34.4389
References:
[1]

R. Adler, Continued fractions and Bernoulli trials,, in Ergodic Theory (A Seminar), (1975).   Google Scholar

[2]

R. Adler and L. Flatto, Geodesic flows, interval maps, and symbolic dynamics,, Bull. Amer. Math. Soc. (N.S.), 25 (1991), 229.  doi: 10.1090/S0273-0979-1991-16076-3.  Google Scholar

[3]

P. Arnoux, Le codage du flot géodésique sur la surface modulaire,, (French) [Coding of the geodesic flow on the modular surface], 40 (1994), 29.   Google Scholar

[4]

P. Arnoux and P. Hubert, Fractions continues sur les surfaces de Veech,, (French) [Continued fractions on Veech's surfaces], 81 (2000), 35.  doi: 10.1007/BF02788985.  Google Scholar

[5]

P. Arnoux and T. A. Schmidt, Veech surfaces with non-periodic directions in the trace field,, J. Mod. Dyn., 3 (2009), 611.  doi: 10.3934/jmd.2009.3.611.  Google Scholar

[6]

_______, Cross sections for geodesic flows and $\alpha$-continued fractions,, Nonlinearity, 26 (2013), 711.  doi: 10.1088/0951-7715/26/3/711.  Google Scholar

[7]

_______, Natural extensions for piecewise Möbius interval maps,, in preparation., ().   Google Scholar

[8]

R. Burton, C. Kraaikamp and T. A. Schmidt, Natural extensions for the Rosen fractions,, Trans. Amer. Math. Soc., 352 (2000), 1277.  doi: 10.1090/S0002-9947-99-02442-3.  Google Scholar

[9]

K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers,, Carus Mathematical Monographs, (2002).   Google Scholar

[10]

K. Dajani, C. Kraaikamp and W. Steiner, Metrical theory for $\alpha$-Rosen fractions,, J. Eur. Math. Soc. (JEMS), 11 (2009), 1259.  doi: 10.4171/JEMS/181.  Google Scholar

[11]

D. Fried, Symbolic dynamics for triangle groups,, Invent. Math., 125 (1996), 487.  doi: 10.1007/s002220050084.  Google Scholar

[12]

K. Gröchenig and A. Haas, Backward continued fractions and their invariant measures,, Canad. Math. Bull., 39 (1996), 186.  doi: 10.4153/CMB-1996-023-8.  Google Scholar

[13]

E. Hopf, Fuchsian groups and ergodic theory,, Trans. Amer. Math. Soc., 39 (1936), 299.  doi: 10.1090/S0002-9947-1936-1501848-8.  Google Scholar

[14]

P. Hubert and T. A. Schmidt, Infinitely generated Veech groups,, Duke Math. J., 123 (2004), 49.  doi: 10.1215/S0012-7094-04-12312-8.  Google Scholar

[15]

C. Kraaikamp, T. A. Schmidt and W. Steiner, Natural extensions and entropy of $\alpha$-continued fractions,, Nonlinearity, 25 (2012), 2207.  doi: 10.1088/0951-7715/25/8/2207.  Google Scholar

[16]

A. Manning, Dynamics of geodesic and horocycle flows on surfaces of constant negative curvature,, in Ergodic theory, (1991), 71.   Google Scholar

[17]

D. Mayer and F. Strömberg, Symbolic dynamics for the geodesic flow on Hecke surfaces,, J. Mod. Dyn., 2 (2008), 581.  doi: 10.3934/jmd.2008.2.581.  Google Scholar

[18]

H. Nakada, Continued fractions, geodesic flows and Ford circles,, in Algorithms, (1995), 179.   Google Scholar

[19]

V. A. Rohlin, Exact endomorphisms of Lebesgue spaces (Russian),, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499.   Google Scholar

[20]

D. Rosen, A class of continued fractions associated with certain properly discontinuous groups,, Duke Math. J., 21 (1954), 549.   Google Scholar

[21]

T. A. Schmidt, Remarks on the Rosen $\lambda$- continued fractions, in Number theory with an emphasis on the Markoff spectrum, 147 (1993), 227.   Google Scholar

[22]

C. Series, The modular surface and continued fractions,, J. London Math. Soc. (2), 31 (1985), 69.  doi: 10.1112/jlms/s2-31.1.69.  Google Scholar

[23]

T. A. Schmidt and M. Sheingorn, Length spectra of the Hecke triangle groups,, Math. Z., 220 (1995), 369.  doi: 10.1007/BF02572621.  Google Scholar

[24]

F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory,, Oxford: Clarendon Press, (1995).   Google Scholar

[25]

W. A. Veech, Teichmüller curves in modular space, Eisenstein series, and an application to triangular billiards,, Inv. Math., 97 (1989), 553.  doi: 10.1007/BF01388890.  Google Scholar

[26]

________, The billiard in a regular polygon,, Geom. Funct. Anal., 2 (1992), 341.  doi: 10.1007/BF01896876.  Google Scholar

show all references

References:
[1]

R. Adler, Continued fractions and Bernoulli trials,, in Ergodic Theory (A Seminar), (1975).   Google Scholar

[2]

R. Adler and L. Flatto, Geodesic flows, interval maps, and symbolic dynamics,, Bull. Amer. Math. Soc. (N.S.), 25 (1991), 229.  doi: 10.1090/S0273-0979-1991-16076-3.  Google Scholar

[3]

P. Arnoux, Le codage du flot géodésique sur la surface modulaire,, (French) [Coding of the geodesic flow on the modular surface], 40 (1994), 29.   Google Scholar

[4]

P. Arnoux and P. Hubert, Fractions continues sur les surfaces de Veech,, (French) [Continued fractions on Veech's surfaces], 81 (2000), 35.  doi: 10.1007/BF02788985.  Google Scholar

[5]

P. Arnoux and T. A. Schmidt, Veech surfaces with non-periodic directions in the trace field,, J. Mod. Dyn., 3 (2009), 611.  doi: 10.3934/jmd.2009.3.611.  Google Scholar

[6]

_______, Cross sections for geodesic flows and $\alpha$-continued fractions,, Nonlinearity, 26 (2013), 711.  doi: 10.1088/0951-7715/26/3/711.  Google Scholar

[7]

_______, Natural extensions for piecewise Möbius interval maps,, in preparation., ().   Google Scholar

[8]

R. Burton, C. Kraaikamp and T. A. Schmidt, Natural extensions for the Rosen fractions,, Trans. Amer. Math. Soc., 352 (2000), 1277.  doi: 10.1090/S0002-9947-99-02442-3.  Google Scholar

[9]

K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers,, Carus Mathematical Monographs, (2002).   Google Scholar

[10]

K. Dajani, C. Kraaikamp and W. Steiner, Metrical theory for $\alpha$-Rosen fractions,, J. Eur. Math. Soc. (JEMS), 11 (2009), 1259.  doi: 10.4171/JEMS/181.  Google Scholar

[11]

D. Fried, Symbolic dynamics for triangle groups,, Invent. Math., 125 (1996), 487.  doi: 10.1007/s002220050084.  Google Scholar

[12]

K. Gröchenig and A. Haas, Backward continued fractions and their invariant measures,, Canad. Math. Bull., 39 (1996), 186.  doi: 10.4153/CMB-1996-023-8.  Google Scholar

[13]

E. Hopf, Fuchsian groups and ergodic theory,, Trans. Amer. Math. Soc., 39 (1936), 299.  doi: 10.1090/S0002-9947-1936-1501848-8.  Google Scholar

[14]

P. Hubert and T. A. Schmidt, Infinitely generated Veech groups,, Duke Math. J., 123 (2004), 49.  doi: 10.1215/S0012-7094-04-12312-8.  Google Scholar

[15]

C. Kraaikamp, T. A. Schmidt and W. Steiner, Natural extensions and entropy of $\alpha$-continued fractions,, Nonlinearity, 25 (2012), 2207.  doi: 10.1088/0951-7715/25/8/2207.  Google Scholar

[16]

A. Manning, Dynamics of geodesic and horocycle flows on surfaces of constant negative curvature,, in Ergodic theory, (1991), 71.   Google Scholar

[17]

D. Mayer and F. Strömberg, Symbolic dynamics for the geodesic flow on Hecke surfaces,, J. Mod. Dyn., 2 (2008), 581.  doi: 10.3934/jmd.2008.2.581.  Google Scholar

[18]

H. Nakada, Continued fractions, geodesic flows and Ford circles,, in Algorithms, (1995), 179.   Google Scholar

[19]

V. A. Rohlin, Exact endomorphisms of Lebesgue spaces (Russian),, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499.   Google Scholar

[20]

D. Rosen, A class of continued fractions associated with certain properly discontinuous groups,, Duke Math. J., 21 (1954), 549.   Google Scholar

[21]

T. A. Schmidt, Remarks on the Rosen $\lambda$- continued fractions, in Number theory with an emphasis on the Markoff spectrum, 147 (1993), 227.   Google Scholar

[22]

C. Series, The modular surface and continued fractions,, J. London Math. Soc. (2), 31 (1985), 69.  doi: 10.1112/jlms/s2-31.1.69.  Google Scholar

[23]

T. A. Schmidt and M. Sheingorn, Length spectra of the Hecke triangle groups,, Math. Z., 220 (1995), 369.  doi: 10.1007/BF02572621.  Google Scholar

[24]

F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory,, Oxford: Clarendon Press, (1995).   Google Scholar

[25]

W. A. Veech, Teichmüller curves in modular space, Eisenstein series, and an application to triangular billiards,, Inv. Math., 97 (1989), 553.  doi: 10.1007/BF01388890.  Google Scholar

[26]

________, The billiard in a regular polygon,, Geom. Funct. Anal., 2 (1992), 341.  doi: 10.1007/BF01896876.  Google Scholar

[1]

Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417

[2]

Laura Luzzi, Stefano Marmi. On the entropy of Japanese continued fractions. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 673-711. doi: 10.3934/dcds.2008.20.673

[3]

Claudio Bonanno, Carlo Carminati, Stefano Isola, Giulio Tiozzo. Dynamics of continued fractions and kneading sequences of unimodal maps. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1313-1332. doi: 10.3934/dcds.2013.33.1313

[4]

Élise Janvresse, Benoît Rittaud, Thierry de la Rue. Dynamics of $\lambda$-continued fractions and $\beta$-shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1477-1498. doi: 10.3934/dcds.2013.33.1477

[5]

Sara Munday. On Hausdorff dimension and cusp excursions for Fuchsian groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2503-2520. doi: 10.3934/dcds.2012.32.2503

[6]

Pilar Bayer, Dionís Remón. A reduction point algorithm for cocompact Fuchsian groups and applications. Advances in Mathematics of Communications, 2014, 8 (2) : 223-239. doi: 10.3934/amc.2014.8.223

[7]

Lulu Fang, Min Wu. Hausdorff dimension of certain sets arising in Engel continued fractions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2375-2393. doi: 10.3934/dcds.2018098

[8]

Marc Kessböhmer, Bernd O. Stratmann. On the asymptotic behaviour of the Lebesgue measure of sum-level sets for continued fractions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2437-2451. doi: 10.3934/dcds.2012.32.2437

[9]

Svetlana Katok, Ilie Ugarcovici. Theory of $(a,b)$-continued fraction transformations and applications. Electronic Research Announcements, 2010, 17: 20-33. doi: 10.3934/era.2010.17.20

[10]

Svetlana Katok, Ilie Ugarcovici. Structure of attractors for $(a,b)$-continued fraction transformations. Journal of Modern Dynamics, 2010, 4 (4) : 637-691. doi: 10.3934/jmd.2010.4.637

[11]

Kanji Inui, Hikaru Okada, Hiroki Sumi. The Hausdorff dimension function of the family of conformal iterated function systems of generalized complex continued fractions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 753-766. doi: 10.3934/dcds.2020060

[12]

Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581

[13]

Zhenqi Jenny Wang. The twisted cohomological equation over the geodesic flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3923-3940. doi: 10.3934/dcds.2019158

[14]

Hongnian Huang. On the extension and smoothing of the Calabi flow on complex tori. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6153-6164. doi: 10.3934/dcds.2017265

[15]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist, Amit K. Sanyal. Embedded geodesic problems and optimal control for matrix Lie groups. Journal of Geometric Mechanics, 2011, 3 (2) : 197-223. doi: 10.3934/jgm.2011.3.197

[16]

Anke D. Pohl. Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2173-2241. doi: 10.3934/dcds.2014.34.2173

[17]

Vladimir S. Matveev and Petar J. Topalov. Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. Electronic Research Announcements, 2000, 6: 98-104.

[18]

Bendong Lou. Spiral rotating waves of a geodesic curvature flow on the unit sphere. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 933-942. doi: 10.3934/dcdsb.2012.17.933

[19]

Jonatan Lenells. Weak geodesic flow and global solutions of the Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 643-656. doi: 10.3934/dcds.2007.18.643

[20]

Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]