November  2014, 34(11): 4419-4458. doi: 10.3934/dcds.2014.34.4419

Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids

1. 

Department of Financial Engineering, Ajou University, Suwon 443-749, South Korea

2. 

Department of Mathematics, Imperial College London, London SW7 2AZ

3. 

Department of Mathematical Sciences, Seoul National University, Seoul 151-747, South Korea

4. 

Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, United States

Received  November 2013 Revised  December 2013 Published  May 2014

We propose a coupled system for the interaction between Cucker-Smale flocking particles and viscous compressible fluids, and present a global existence theory and time-asymptotic behavior for the proposed model in the spatial periodic domain $\mathbb{T}^3$. Our model consists of the kinetic Cucker-Smale model for flocking particles and the isentropic compressible Navier-Stokes equations for fluids, and these two models are coupled through a drag force, which is responsible for the asymptotic alignment between particles and fluid. For the asymptotic flocking behavior, we explicitly construct a Lyapunov functional measuring the deviation from the asymptotic flocking states. For a large viscosity and small initial data, we show that the velocities of Cucker-Smale particles and fluids are asymptotically aligned to the common velocity.
Citation: Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419
References:
[1]

H.-O. Bae, Y.-P. Choi, S.-Y. Ha and M.-J. Kang, Time-asymptotic interaction of flocking particles and an incompressible viscous fluid,, Nonlinearity, 25 (2012), 1155.  doi: 10.1088/0951-7715/25/4/1155.  Google Scholar

[2]

H.-O. Bae, Y.-P. Choi, S.-Y. Ha and M.-J. Kang, Global existence of strong solution for the Cucker-Smale-Navier-Stokes system,, submitted., ().   Google Scholar

[3]

C. Baranger and L. Desvillettes, Coupling Euler and Vlasov equation in the context of sprays: the local-in-time, classical solutions,, J. Hyperbolic Differ. Equ., 3 (2006), 1.  doi: 10.1142/S0219891606000707.  Google Scholar

[4]

M. E. Bogovskii, Solution of some vector analysis problems connected with operators div and grad (in Russian),, Trudy Sem. S. L. Sobolev, 80 (1980), 5.   Google Scholar

[5]

W. Borchers and H. Sohr, On the equation rot $v = g$ and div$u = f$ with zero boundary conditions,, Hokkaido Math. J., 19 (1990), 67.  doi: 10.14492/hokmj/1381517172.  Google Scholar

[6]

L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa, Global existence of solution for the coupled Vlasov and Navier-Stokes equations,, Differential and Integral Equations, 22 (2009), 1247.   Google Scholar

[7]

J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic Flocking Dynamics for the kinetic Cucker-Smale model,, SIAM J. Math. Anal., 42 (2010), 218.  doi: 10.1137/090757290.  Google Scholar

[8]

M. Chae, K. Kang and J. Lee, Global existence of weak and classical solutions for the Navier-Stokes-Vlasov-Fokker-Planck equations,, J. Differential Equation, 251 (2011), 2431.  doi: 10.1016/j.jde.2011.07.016.  Google Scholar

[9]

Y. Cho, High regularity of solutions of compressible Navier-Stokes equations,, Adv. Differential Equations, 12 (2007), 893.   Google Scholar

[10]

Y. Cho, H.-J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible vicous fluids,, J. Math. Pures Appl., 83 (2004), 243.  doi: 10.1016/j.matpur.2003.11.004.  Google Scholar

[11]

H.-J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids,, J. Differential Equations, 190 (2003), 504.  doi: 10.1016/S0022-0396(03)00015-9.  Google Scholar

[12]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[13]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations,, Invent. Math., 141 (2000), 579.  doi: 10.1007/s002220000078.  Google Scholar

[14]

B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations,, Comm. Partial Differential Equations, 22 (1997), 977.  doi: 10.1080/03605309708821291.  Google Scholar

[15]

D. Fang, R. Zi and T. Zhang, Decay estimates for isentropic compressible Navier-Stokes equations in bounded domain,, J. Math. Anal. Appl., 386 (2012), 939.  doi: 10.1016/j.jmaa.2011.08.055.  Google Scholar

[16]

E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.  doi: 10.1007/PL00000976.  Google Scholar

[17]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations I,, SpringerVerlag, (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[18]

T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations I. Light particles regime,, Indiana Univ. Math. J., 53 (2004), 1495.  doi: 10.1512/iumj.2004.53.2508.  Google Scholar

[19]

T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations II. Fine particles regime,, Indiana Univ. Math. J., 53 (2004), 1517.  doi: 10.1512/iumj.2004.53.2509.  Google Scholar

[20]

S.-Y. Ha and J.-G. Liu, Short proof of Cucker-Smales flocking and the mean-field limit,, Comm. Math. Sci., 7 (2009), 297.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[21]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking,, Kinetic and Related Models, 1 (2008), 415.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[22]

K. Hamdache, Global existence and large time behavior of solutions for the Vlasov-Stokes equations,, Japan J. Indust. Appl. Math., 15 (1998), 51.  doi: 10.1007/BF03167396.  Google Scholar

[23]

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data,, J. Differential Equations, 120 (1995), 215.  doi: 10.1006/jdeq.1995.1111.  Google Scholar

[24]

N. Itaya, On the cauchy problem for the system of fundamental equations descrbing the movement of compressible viscous fluids,, Kodai math. Sem. Rep., 23 (1971), 60.  doi: 10.2996/kmj/1138846265.  Google Scholar

[25]

Y. Kagei and T. Kobayashi, On large time behavior of solutions to the compressible Navier-Stokes equations in the half space in $\mathbbR^3$,, Arch. Rational Mech. Anal., 165 (2002), 89.  doi: 10.1007/s00205-002-0221-x.  Google Scholar

[26]

Y. Kagei and T. Kobayashi, Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space,, Arch. Rational Mech. Anal., 177 (2005), 231.  doi: 10.1007/s00205-005-0365-6.  Google Scholar

[27]

T. Kobayashi, Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in $\mathbbR^3$,, J. Differential Equations, 184 (2002), 587.  doi: 10.1006/jdeq.2002.4158.  Google Scholar

[28]

T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbbR^3$,, Comm. Math. Phys., 200 (1999), 621.  doi: 10.1007/s002200050543.  Google Scholar

[29]

P.-L. Lions, Mathematical Topics in Fluid Mechanics,, Vol. 2. Compressible models. Oxford Lecture Series in Mathematics and its Applications, (1998).   Google Scholar

[30]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[31]

A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids,, Commun. Math. Phys., 89 (1983), 445.   Google Scholar

[32]

A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations,, Math. Models Methods Appl. Sci., 17 (2007), 1039.  doi: 10.1142/S0218202507002194.  Google Scholar

[33]

G. Ponce, Global existence of small solution to a class of nonlinear evolution equations,, Nonlinear Anal., 9 (1985), 399.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[34]

Y. Shibata and K. Tanaka, On the steady compressible viscous fluid and its stability with respect to initial distrubance,, J. Math. Soc. Jpn., 55 (2003), 797.  doi: 10.2969/jmsj/1191419003.  Google Scholar

[35]

S. Ukai, T. Yang and H.-J. Zhao, Convergence rate for the compressible Navier-Stokes equations with external force,, J. Hyperbolic Differ. Equ., 3 (2006), 561.  doi: 10.1142/S0219891606000902.  Google Scholar

[36]

A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 607.   Google Scholar

[37]

A. Valli and W. M. Zajaczkowski, Navier-Stokes equations for compressible fluids, global existence and qualitative properties of the solutions in the general case,, Commun. Math. Phys., 103 (1986), 259.  doi: 10.1007/BF01206939.  Google Scholar

[38]

F. A. Williams, Combustion Theory, The Fundamental Theory of Chemically Reacting Flow Systems,, Addison-Wesley series in engineering scinece, (1965).   Google Scholar

show all references

References:
[1]

H.-O. Bae, Y.-P. Choi, S.-Y. Ha and M.-J. Kang, Time-asymptotic interaction of flocking particles and an incompressible viscous fluid,, Nonlinearity, 25 (2012), 1155.  doi: 10.1088/0951-7715/25/4/1155.  Google Scholar

[2]

H.-O. Bae, Y.-P. Choi, S.-Y. Ha and M.-J. Kang, Global existence of strong solution for the Cucker-Smale-Navier-Stokes system,, submitted., ().   Google Scholar

[3]

C. Baranger and L. Desvillettes, Coupling Euler and Vlasov equation in the context of sprays: the local-in-time, classical solutions,, J. Hyperbolic Differ. Equ., 3 (2006), 1.  doi: 10.1142/S0219891606000707.  Google Scholar

[4]

M. E. Bogovskii, Solution of some vector analysis problems connected with operators div and grad (in Russian),, Trudy Sem. S. L. Sobolev, 80 (1980), 5.   Google Scholar

[5]

W. Borchers and H. Sohr, On the equation rot $v = g$ and div$u = f$ with zero boundary conditions,, Hokkaido Math. J., 19 (1990), 67.  doi: 10.14492/hokmj/1381517172.  Google Scholar

[6]

L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa, Global existence of solution for the coupled Vlasov and Navier-Stokes equations,, Differential and Integral Equations, 22 (2009), 1247.   Google Scholar

[7]

J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic Flocking Dynamics for the kinetic Cucker-Smale model,, SIAM J. Math. Anal., 42 (2010), 218.  doi: 10.1137/090757290.  Google Scholar

[8]

M. Chae, K. Kang and J. Lee, Global existence of weak and classical solutions for the Navier-Stokes-Vlasov-Fokker-Planck equations,, J. Differential Equation, 251 (2011), 2431.  doi: 10.1016/j.jde.2011.07.016.  Google Scholar

[9]

Y. Cho, High regularity of solutions of compressible Navier-Stokes equations,, Adv. Differential Equations, 12 (2007), 893.   Google Scholar

[10]

Y. Cho, H.-J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible vicous fluids,, J. Math. Pures Appl., 83 (2004), 243.  doi: 10.1016/j.matpur.2003.11.004.  Google Scholar

[11]

H.-J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids,, J. Differential Equations, 190 (2003), 504.  doi: 10.1016/S0022-0396(03)00015-9.  Google Scholar

[12]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[13]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations,, Invent. Math., 141 (2000), 579.  doi: 10.1007/s002220000078.  Google Scholar

[14]

B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations,, Comm. Partial Differential Equations, 22 (1997), 977.  doi: 10.1080/03605309708821291.  Google Scholar

[15]

D. Fang, R. Zi and T. Zhang, Decay estimates for isentropic compressible Navier-Stokes equations in bounded domain,, J. Math. Anal. Appl., 386 (2012), 939.  doi: 10.1016/j.jmaa.2011.08.055.  Google Scholar

[16]

E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.  doi: 10.1007/PL00000976.  Google Scholar

[17]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations I,, SpringerVerlag, (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[18]

T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations I. Light particles regime,, Indiana Univ. Math. J., 53 (2004), 1495.  doi: 10.1512/iumj.2004.53.2508.  Google Scholar

[19]

T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations II. Fine particles regime,, Indiana Univ. Math. J., 53 (2004), 1517.  doi: 10.1512/iumj.2004.53.2509.  Google Scholar

[20]

S.-Y. Ha and J.-G. Liu, Short proof of Cucker-Smales flocking and the mean-field limit,, Comm. Math. Sci., 7 (2009), 297.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[21]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking,, Kinetic and Related Models, 1 (2008), 415.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[22]

K. Hamdache, Global existence and large time behavior of solutions for the Vlasov-Stokes equations,, Japan J. Indust. Appl. Math., 15 (1998), 51.  doi: 10.1007/BF03167396.  Google Scholar

[23]

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data,, J. Differential Equations, 120 (1995), 215.  doi: 10.1006/jdeq.1995.1111.  Google Scholar

[24]

N. Itaya, On the cauchy problem for the system of fundamental equations descrbing the movement of compressible viscous fluids,, Kodai math. Sem. Rep., 23 (1971), 60.  doi: 10.2996/kmj/1138846265.  Google Scholar

[25]

Y. Kagei and T. Kobayashi, On large time behavior of solutions to the compressible Navier-Stokes equations in the half space in $\mathbbR^3$,, Arch. Rational Mech. Anal., 165 (2002), 89.  doi: 10.1007/s00205-002-0221-x.  Google Scholar

[26]

Y. Kagei and T. Kobayashi, Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space,, Arch. Rational Mech. Anal., 177 (2005), 231.  doi: 10.1007/s00205-005-0365-6.  Google Scholar

[27]

T. Kobayashi, Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in $\mathbbR^3$,, J. Differential Equations, 184 (2002), 587.  doi: 10.1006/jdeq.2002.4158.  Google Scholar

[28]

T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbbR^3$,, Comm. Math. Phys., 200 (1999), 621.  doi: 10.1007/s002200050543.  Google Scholar

[29]

P.-L. Lions, Mathematical Topics in Fluid Mechanics,, Vol. 2. Compressible models. Oxford Lecture Series in Mathematics and its Applications, (1998).   Google Scholar

[30]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[31]

A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids,, Commun. Math. Phys., 89 (1983), 445.   Google Scholar

[32]

A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations,, Math. Models Methods Appl. Sci., 17 (2007), 1039.  doi: 10.1142/S0218202507002194.  Google Scholar

[33]

G. Ponce, Global existence of small solution to a class of nonlinear evolution equations,, Nonlinear Anal., 9 (1985), 399.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[34]

Y. Shibata and K. Tanaka, On the steady compressible viscous fluid and its stability with respect to initial distrubance,, J. Math. Soc. Jpn., 55 (2003), 797.  doi: 10.2969/jmsj/1191419003.  Google Scholar

[35]

S. Ukai, T. Yang and H.-J. Zhao, Convergence rate for the compressible Navier-Stokes equations with external force,, J. Hyperbolic Differ. Equ., 3 (2006), 561.  doi: 10.1142/S0219891606000902.  Google Scholar

[36]

A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 607.   Google Scholar

[37]

A. Valli and W. M. Zajaczkowski, Navier-Stokes equations for compressible fluids, global existence and qualitative properties of the solutions in the general case,, Commun. Math. Phys., 103 (1986), 259.  doi: 10.1007/BF01206939.  Google Scholar

[38]

F. A. Williams, Combustion Theory, The Fundamental Theory of Chemically Reacting Flow Systems,, Addison-Wesley series in engineering scinece, (1965).   Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[4]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[5]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[6]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[7]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[8]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[9]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[13]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[14]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[15]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[16]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[17]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[18]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[19]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[20]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (23)

[Back to Top]