Advanced Search
Article Contents
Article Contents

Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids

Abstract Related Papers Cited by
  • We propose a coupled system for the interaction between Cucker-Smale flocking particles and viscous compressible fluids, and present a global existence theory and time-asymptotic behavior for the proposed model in the spatial periodic domain $\mathbb{T}^3$. Our model consists of the kinetic Cucker-Smale model for flocking particles and the isentropic compressible Navier-Stokes equations for fluids, and these two models are coupled through a drag force, which is responsible for the asymptotic alignment between particles and fluid. For the asymptotic flocking behavior, we explicitly construct a Lyapunov functional measuring the deviation from the asymptotic flocking states. For a large viscosity and small initial data, we show that the velocities of Cucker-Smale particles and fluids are asymptotically aligned to the common velocity.
    Mathematics Subject Classification: 35Q30, 35Q70, 76N10, 35Q83.


    \begin{equation} \\ \end{equation}
  • [1]

    H.-O. Bae, Y.-P. Choi, S.-Y. Ha and M.-J. Kang, Time-asymptotic interaction of flocking particles and an incompressible viscous fluid, Nonlinearity, 25 (2012), 1155-1177.doi: 10.1088/0951-7715/25/4/1155.


    H.-O. Bae, Y.-P. Choi, S.-Y. Ha and M.-J. Kang, Global existence of strong solution for the Cucker-Smale-Navier-Stokes system, submitted.


    C. Baranger and L. Desvillettes, Coupling Euler and Vlasov equation in the context of sprays: the local-in-time, classical solutions, J. Hyperbolic Differ. Equ., 3 (2006), 1-26.doi: 10.1142/S0219891606000707.


    M. E. Bogovskii, Solution of some vector analysis problems connected with operators div and grad (in Russian), Trudy Sem. S. L. Sobolev, 80 (1980), 5-40.


    W. Borchers and H. Sohr, On the equation rot $v = g$ and div$u = f$ with zero boundary conditions, Hokkaido Math. J., 19 (1990), 67-87.doi: 10.14492/hokmj/1381517172.


    L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa, Global existence of solution for the coupled Vlasov and Navier-Stokes equations, Differential and Integral Equations, 22 (2009), 1247-1271.


    J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic Flocking Dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.doi: 10.1137/090757290.


    M. Chae, K. Kang and J. Lee, Global existence of weak and classical solutions for the Navier-Stokes-Vlasov-Fokker-Planck equations, J. Differential Equation, 251 (2011), 2431-2465.doi: 10.1016/j.jde.2011.07.016.


    Y. Cho, High regularity of solutions of compressible Navier-Stokes equations, Adv. Differential Equations, 12 (2007), 893-960.


    Y. Cho, H.-J. Choe and H. Kim, Unique solvability of the initial boundary value problems for compressible vicous fluids, J. Math. Pures Appl., 83 (2004), 243-275.doi: 10.1016/j.matpur.2003.11.004.


    H.-J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Differential Equations, 190 (2003), 504-523.doi: 10.1016/S0022-0396(03)00015-9.


    F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.doi: 10.1109/TAC.2007.895842.


    R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.doi: 10.1007/s002220000078.


    B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations, Comm. Partial Differential Equations, 22 (1997), 977-1008.doi: 10.1080/03605309708821291.


    D. Fang, R. Zi and T. Zhang, Decay estimates for isentropic compressible Navier-Stokes equations in bounded domain, J. Math. Anal. Appl., 386 (2012), 939-947.doi: 10.1016/j.jmaa.2011.08.055.


    E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.doi: 10.1007/PL00000976.


    G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations I, SpringerVerlag, New York, 1994.doi: 10.1007/978-1-4612-5364-8.


    T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations I. Light particles regime, Indiana Univ. Math. J., 53 (2004), 1495-1515.doi: 10.1512/iumj.2004.53.2508.


    T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations II. Fine particles regime, Indiana Univ. Math. J., 53 (2004), 1517-1536.doi: 10.1512/iumj.2004.53.2509.


    S.-Y. Ha and J.-G. Liu, Short proof of Cucker-Smales flocking and the mean-field limit, Comm. Math. Sci., 7 (2009), 297-325.doi: 10.4310/CMS.2009.v7.n2.a2.


    S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinetic and Related Models, 1 (2008), 415-435.doi: 10.3934/krm.2008.1.415.


    K. Hamdache, Global existence and large time behavior of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math., 15 (1998), 51-74.doi: 10.1007/BF03167396.


    D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential Equations, 120 (1995), 215-254.doi: 10.1006/jdeq.1995.1111.


    N. Itaya, On the cauchy problem for the system of fundamental equations descrbing the movement of compressible viscous fluids, Kodai math. Sem. Rep., 23 (1971), 60-120.doi: 10.2996/kmj/1138846265.


    Y. Kagei and T. Kobayashi, On large time behavior of solutions to the compressible Navier-Stokes equations in the half space in $\mathbbR^3$, Arch. Rational Mech. Anal., 165 (2002), 89-159.doi: 10.1007/s00205-002-0221-x.


    Y. Kagei and T. Kobayashi, Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space, Arch. Rational Mech. Anal., 177 (2005), 231-330.doi: 10.1007/s00205-005-0365-6.


    T. Kobayashi, Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in $\mathbbR^3$, J. Differential Equations, 184 (2002), 587-619.doi: 10.1006/jdeq.2002.4158.


    T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbbR^3$, Comm. Math. Phys., 200 (1999), 621-659.doi: 10.1007/s002200050543.


    P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2. Compressible models. Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998.


    A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.


    A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Commun. Math. Phys., 89 (1983), 445-464.


    A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations, Math. Models Methods Appl. Sci., 17 (2007), 1039-1063.doi: 10.1142/S0218202507002194.


    G. Ponce, Global existence of small solution to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 399-418.doi: 10.1016/0362-546X(85)90001-X.


    Y. Shibata and K. Tanaka, On the steady compressible viscous fluid and its stability with respect to initial distrubance, J. Math. Soc. Jpn., 55 (2003), 797-826.doi: 10.2969/jmsj/1191419003.


    S. Ukai, T. Yang and H.-J. Zhao, Convergence rate for the compressible Navier-Stokes equations with external force, J. Hyperbolic Differ. Equ., 3 (2006), 561-574.doi: 10.1142/S0219891606000902.


    A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 607-647.


    A. Valli and W. M. Zajaczkowski, Navier-Stokes equations for compressible fluids, global existence and qualitative properties of the solutions in the general case, Commun. Math. Phys., 103 (1986), 259-296.doi: 10.1007/BF01206939.


    F. A. Williams, Combustion Theory, The Fundamental Theory of Chemically Reacting Flow Systems, Addison-Wesley series in engineering scinece, 1965.

  • 加载中

Article Metrics

HTML views() PDF downloads(134) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint