Citation: |
[1] |
S. Akiyama and K. Scheicher, Symmetric shift radix systems and finite expansions, Math. Pannon., 18 (2007), 101-124. |
[2] |
J. Allouche, M. Clarke and N. Sidorov, Periodic unique beta-expansions: The Sharkovskiĭ ordering, Ergodic Theory Dynam. Systems, 29 (2009), 1055-1074.doi: 10.1017/S0143385708000746. |
[3] |
S. Baker, Generalised golden ratios over integer alphabets, Integers, 14 (2014) Paper No. A15, 1-28. |
[4] |
R. Bowen, Periodic points and measures for Axiom $A$ diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397. |
[5] |
R. Bowen, Some systems with unique equilibrium states, Math. Systems Theory, 8 (1974/75), 193-202. doi: 10.1007/BF01762666. |
[6] |
M. Boyle, Algebraic aspects of symbolic dynamics, In Topics in symbolic dynamics and applications (Temuco, 1997), volume 279 of London Math. Soc. Lecture Note Ser., pages 57-88. Cambridge Univ. Press, Cambridge, 2000. |
[7] |
M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 2002.doi: 10.1017/CBO9780511755316. |
[8] |
S. Bundfuss, T. Krüger and S. Troubetzkoy, Topological and symbolic dynamics for hyperbolic systems with holes, Ergodic Theory Dynam. Systems, 31 (2011), 1305-1323.doi: 10.1017/S0143385710000556. |
[9] |
V. Climenhaga and D. J. Thompson, Intrinsic ergodicity beyond specification: $\beta$-shifts, $S$-gap shifts, and their factors, Israel J. Math., 192 (2012), 785-817.doi: 10.1007/s11856-012-0052-x. |
[10] |
M. F. Demers and P. Wright, Behaviour of the escape rate function in hyperbolic dynamical systems, Nonlinearity, 25 (2012), 2133-2150.doi: 10.1088/0951-7715/25/7/2133. |
[11] |
C. Dettmann, Open circle maps: Small hole asymptotics, Nonlinearity, 26 (2013), 307-317.doi: 10.1088/0951-7715/26/1/307. |
[12] |
P. Erdös, I. Joó and V. Komornik, Characterization of the unique expansions $1=\sum$$^\infty_{i=1}q^{-n_i}$ and related problems, Bull. Soc. Math. France, 118 (1990), 377-390. |
[13] |
P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Lett., 8 (2001), 535-543.doi: 10.4310/MRL.2001.v8.n4.a12. |
[14] |
P. Glendinning and N. Sidorov, The doubling map with asymmetrical holes, Ergodic Theory and Dynamical Systems Ergodic Theory and Dynamical Systems, (2013), 1-21. arXiv:1302.2486.doi: 10.1017/etds.2013.98. |
[15] |
B. M. Gurevič, Uniqueness of the measure with maximal entropy for symbolic dynamical systems that are close to Markov ones, Dokl. Akad. Nauk SSSR, 204 (1972), 15-17. |
[16] |
N. T. A. Haydn, Phase transition in one-dimensional subshifts, Discrete Contin. Dyn. Syst., 33 (2013), 1965-1973.doi: 10.3934/dcds.2013.33.1965. |
[17] |
G. Keller and C. Liverani, Rare events, escape rates and quasistationarity: Some exact formulae, J. Stat. Phys., 135 (2009), 519-534.doi: 10.1007/s10955-009-9747-8. |
[18] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511626302. |
[19] |
R. Mañé, Introdução à teoria ergódica, volume 14 of Projeto Euclides [Euclid Project], Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1983. |
[20] |
J. Nilsson, On numbers badly approximable by dyadic rationals, Israel J. Math., 171 (2009), 93-110.doi: 10.1007/s11856-009-0042-9. |
[21] |
J. Nilsson, The fine structure of Dyadically badly approximable numbers, ArXiv e-prints, arXiv:1002.4614, February 2010. |
[22] |
W. Parry, On the $\beta $-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), 401-416.doi: 10.1007/BF02020954. |
[23] |
W. Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc., 112 (1964), 55-66.doi: 10.1090/S0002-9947-1964-0161372-1. |
[24] |
K. Petersen, Chains, entropy, coding, Ergodic Theory Dynam. Systems, 6 (1986), 415-448.doi: 10.1017/S014338570000359X. |
[25] |
N. Sidorov, Arithmetic dynamics, In Topics in dynamics and ergodic theory, volume 310 of London Math. Soc. Lecture Note Ser., pages 145-189. Cambridge Univ. Press, Cambridge, 2003.doi: 10.1017/CBO9780511546716.010. |
[26] |
N. Sidorov, Supercritical holes for the doubling map, Acta Mathematica Hungarica, pages 1-15, 2014. |
[27] |
M. Urbański, Invariant subsets of expanding mappings of the circle, Ergodic Theory Dynam. Systems, 7 (1987), 627-645.doi: 10.1017/S0143385700004247. |
[28] |
P. Walters, An Introduction to Ergodic Theory, volume 79 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1982. |
[29] |
B. Weiss, Intrinsically ergodic systems, Bull. Amer. Math. Soc., 76 (1970), 1266-1269.doi: 10.1090/S0002-9904-1970-12632-5. |
[30] |
B. Weiss, Subshifts of finite type and sofic systems, Monatsh. Math., 77 (1973), 462-474.doi: 10.1007/BF01295322. |