November  2014, 34(11): 4459-4486. doi: 10.3934/dcds.2014.34.4459

Topological and ergodic properties of symmetric sub-shifts

1. 

School of Mathematics, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom

Received  July 2013 Revised  February 2014 Published  May 2014

The family of symmetric one sided sub-shifts in two symbols given by a sequence $a$ is studied. We analyse some of their topological properties such as transitivity, the specification property and intrinsic ergodicity. It is shown that almost every member of this family admits only one measure of maximal entropy. It is shown that the same results hold for attractors of the family of open dynamical systems arising from the doubling map with a centred symmetric hole depending on one parameter, and for the set of points that have unique $\beta$-expansion for $\beta \in (\varphi,2)$ where $\varphi$ is the Golden Ratio.
Citation: Rafael Alcaraz Barrera. Topological and ergodic properties of symmetric sub-shifts. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4459-4486. doi: 10.3934/dcds.2014.34.4459
References:
[1]

S. Akiyama and K. Scheicher, Symmetric shift radix systems and finite expansions,, Math. Pannon., 18 (2007), 101.   Google Scholar

[2]

J. Allouche, M. Clarke and N. Sidorov, Periodic unique beta-expansions: The Sharkovskiĭ ordering,, Ergodic Theory Dynam. Systems, 29 (2009), 1055.  doi: 10.1017/S0143385708000746.  Google Scholar

[3]

S. Baker, Generalised golden ratios over integer alphabets,, Integers, 14 (2014), 1.   Google Scholar

[4]

R. Bowen, Periodic points and measures for Axiom $A$ diffeomorphisms,, Trans. Amer. Math. Soc., 154 (1971), 377.   Google Scholar

[5]

R. Bowen, Some systems with unique equilibrium states,, Math. Systems Theory, 8 (): 193.  doi: 10.1007/BF01762666.  Google Scholar

[6]

M. Boyle, Algebraic aspects of symbolic dynamics,, In Topics in symbolic dynamics and applications (Temuco, (1997), 57.   Google Scholar

[7]

M. Brin and G. Stuck, Introduction to Dynamical Systems,, Cambridge University Press, (2002).  doi: 10.1017/CBO9780511755316.  Google Scholar

[8]

S. Bundfuss, T. Krüger and S. Troubetzkoy, Topological and symbolic dynamics for hyperbolic systems with holes,, Ergodic Theory Dynam. Systems, 31 (2011), 1305.  doi: 10.1017/S0143385710000556.  Google Scholar

[9]

V. Climenhaga and D. J. Thompson, Intrinsic ergodicity beyond specification: $\beta$-shifts, $S$-gap shifts, and their factors,, Israel J. Math., 192 (2012), 785.  doi: 10.1007/s11856-012-0052-x.  Google Scholar

[10]

M. F. Demers and P. Wright, Behaviour of the escape rate function in hyperbolic dynamical systems,, Nonlinearity, 25 (2012), 2133.  doi: 10.1088/0951-7715/25/7/2133.  Google Scholar

[11]

C. Dettmann, Open circle maps: Small hole asymptotics,, Nonlinearity, 26 (2013), 307.  doi: 10.1088/0951-7715/26/1/307.  Google Scholar

[12]

P. Erdös, I. Joó and V. Komornik, Characterization of the unique expansions $1=\sum$$^\infty_{i=1}q^{-n_i}$ and related problems,, Bull. Soc. Math. France, 118 (1990), 377.   Google Scholar

[13]

P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases,, Math. Res. Lett., 8 (2001), 535.  doi: 10.4310/MRL.2001.v8.n4.a12.  Google Scholar

[14]

P. Glendinning and N. Sidorov, The doubling map with asymmetrical holes,, Ergodic Theory and Dynamical Systems Ergodic Theory and Dynamical Systems, (2013), 1.  doi: 10.1017/etds.2013.98.  Google Scholar

[15]

B. M. Gurevič, Uniqueness of the measure with maximal entropy for symbolic dynamical systems that are close to Markov ones,, Dokl. Akad. Nauk SSSR, 204 (1972), 15.   Google Scholar

[16]

N. T. A. Haydn, Phase transition in one-dimensional subshifts,, Discrete Contin. Dyn. Syst., 33 (2013), 1965.  doi: 10.3934/dcds.2013.33.1965.  Google Scholar

[17]

G. Keller and C. Liverani, Rare events, escape rates and quasistationarity: Some exact formulae,, J. Stat. Phys., 135 (2009), 519.  doi: 10.1007/s10955-009-9747-8.  Google Scholar

[18]

D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511626302.  Google Scholar

[19]

R. Mañé, Introdução à teoria ergódica, volume 14 of Projeto Euclides [Euclid Project],, Instituto de Matemática Pura e Aplicada (IMPA), (1983).   Google Scholar

[20]

J. Nilsson, On numbers badly approximable by dyadic rationals,, Israel J. Math., 171 (2009), 93.  doi: 10.1007/s11856-009-0042-9.  Google Scholar

[21]

J. Nilsson, The fine structure of Dyadically badly approximable numbers,, ArXiv e-prints, (2010).   Google Scholar

[22]

W. Parry, On the $\beta $-expansions of real numbers,, Acta Math. Acad. Sci. Hungar., 11 (1960), 401.  doi: 10.1007/BF02020954.  Google Scholar

[23]

W. Parry, Intrinsic Markov chains,, Trans. Amer. Math. Soc., 112 (1964), 55.  doi: 10.1090/S0002-9947-1964-0161372-1.  Google Scholar

[24]

K. Petersen, Chains, entropy, coding,, Ergodic Theory Dynam. Systems, 6 (1986), 415.  doi: 10.1017/S014338570000359X.  Google Scholar

[25]

N. Sidorov, Arithmetic dynamics,, In Topics in dynamics and ergodic theory, (2003), 145.  doi: 10.1017/CBO9780511546716.010.  Google Scholar

[26]

N. Sidorov, Supercritical holes for the doubling map,, Acta Mathematica Hungarica, (2014), 1.   Google Scholar

[27]

M. Urbański, Invariant subsets of expanding mappings of the circle,, Ergodic Theory Dynam. Systems, 7 (1987), 627.  doi: 10.1017/S0143385700004247.  Google Scholar

[28]

P. Walters, An Introduction to Ergodic Theory, volume 79 of Graduate Texts in Mathematics,, Springer-Verlag, (1982).   Google Scholar

[29]

B. Weiss, Intrinsically ergodic systems,, Bull. Amer. Math. Soc., 76 (1970), 1266.  doi: 10.1090/S0002-9904-1970-12632-5.  Google Scholar

[30]

B. Weiss, Subshifts of finite type and sofic systems,, Monatsh. Math., 77 (1973), 462.  doi: 10.1007/BF01295322.  Google Scholar

show all references

References:
[1]

S. Akiyama and K. Scheicher, Symmetric shift radix systems and finite expansions,, Math. Pannon., 18 (2007), 101.   Google Scholar

[2]

J. Allouche, M. Clarke and N. Sidorov, Periodic unique beta-expansions: The Sharkovskiĭ ordering,, Ergodic Theory Dynam. Systems, 29 (2009), 1055.  doi: 10.1017/S0143385708000746.  Google Scholar

[3]

S. Baker, Generalised golden ratios over integer alphabets,, Integers, 14 (2014), 1.   Google Scholar

[4]

R. Bowen, Periodic points and measures for Axiom $A$ diffeomorphisms,, Trans. Amer. Math. Soc., 154 (1971), 377.   Google Scholar

[5]

R. Bowen, Some systems with unique equilibrium states,, Math. Systems Theory, 8 (): 193.  doi: 10.1007/BF01762666.  Google Scholar

[6]

M. Boyle, Algebraic aspects of symbolic dynamics,, In Topics in symbolic dynamics and applications (Temuco, (1997), 57.   Google Scholar

[7]

M. Brin and G. Stuck, Introduction to Dynamical Systems,, Cambridge University Press, (2002).  doi: 10.1017/CBO9780511755316.  Google Scholar

[8]

S. Bundfuss, T. Krüger and S. Troubetzkoy, Topological and symbolic dynamics for hyperbolic systems with holes,, Ergodic Theory Dynam. Systems, 31 (2011), 1305.  doi: 10.1017/S0143385710000556.  Google Scholar

[9]

V. Climenhaga and D. J. Thompson, Intrinsic ergodicity beyond specification: $\beta$-shifts, $S$-gap shifts, and their factors,, Israel J. Math., 192 (2012), 785.  doi: 10.1007/s11856-012-0052-x.  Google Scholar

[10]

M. F. Demers and P. Wright, Behaviour of the escape rate function in hyperbolic dynamical systems,, Nonlinearity, 25 (2012), 2133.  doi: 10.1088/0951-7715/25/7/2133.  Google Scholar

[11]

C. Dettmann, Open circle maps: Small hole asymptotics,, Nonlinearity, 26 (2013), 307.  doi: 10.1088/0951-7715/26/1/307.  Google Scholar

[12]

P. Erdös, I. Joó and V. Komornik, Characterization of the unique expansions $1=\sum$$^\infty_{i=1}q^{-n_i}$ and related problems,, Bull. Soc. Math. France, 118 (1990), 377.   Google Scholar

[13]

P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases,, Math. Res. Lett., 8 (2001), 535.  doi: 10.4310/MRL.2001.v8.n4.a12.  Google Scholar

[14]

P. Glendinning and N. Sidorov, The doubling map with asymmetrical holes,, Ergodic Theory and Dynamical Systems Ergodic Theory and Dynamical Systems, (2013), 1.  doi: 10.1017/etds.2013.98.  Google Scholar

[15]

B. M. Gurevič, Uniqueness of the measure with maximal entropy for symbolic dynamical systems that are close to Markov ones,, Dokl. Akad. Nauk SSSR, 204 (1972), 15.   Google Scholar

[16]

N. T. A. Haydn, Phase transition in one-dimensional subshifts,, Discrete Contin. Dyn. Syst., 33 (2013), 1965.  doi: 10.3934/dcds.2013.33.1965.  Google Scholar

[17]

G. Keller and C. Liverani, Rare events, escape rates and quasistationarity: Some exact formulae,, J. Stat. Phys., 135 (2009), 519.  doi: 10.1007/s10955-009-9747-8.  Google Scholar

[18]

D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511626302.  Google Scholar

[19]

R. Mañé, Introdução à teoria ergódica, volume 14 of Projeto Euclides [Euclid Project],, Instituto de Matemática Pura e Aplicada (IMPA), (1983).   Google Scholar

[20]

J. Nilsson, On numbers badly approximable by dyadic rationals,, Israel J. Math., 171 (2009), 93.  doi: 10.1007/s11856-009-0042-9.  Google Scholar

[21]

J. Nilsson, The fine structure of Dyadically badly approximable numbers,, ArXiv e-prints, (2010).   Google Scholar

[22]

W. Parry, On the $\beta $-expansions of real numbers,, Acta Math. Acad. Sci. Hungar., 11 (1960), 401.  doi: 10.1007/BF02020954.  Google Scholar

[23]

W. Parry, Intrinsic Markov chains,, Trans. Amer. Math. Soc., 112 (1964), 55.  doi: 10.1090/S0002-9947-1964-0161372-1.  Google Scholar

[24]

K. Petersen, Chains, entropy, coding,, Ergodic Theory Dynam. Systems, 6 (1986), 415.  doi: 10.1017/S014338570000359X.  Google Scholar

[25]

N. Sidorov, Arithmetic dynamics,, In Topics in dynamics and ergodic theory, (2003), 145.  doi: 10.1017/CBO9780511546716.010.  Google Scholar

[26]

N. Sidorov, Supercritical holes for the doubling map,, Acta Mathematica Hungarica, (2014), 1.   Google Scholar

[27]

M. Urbański, Invariant subsets of expanding mappings of the circle,, Ergodic Theory Dynam. Systems, 7 (1987), 627.  doi: 10.1017/S0143385700004247.  Google Scholar

[28]

P. Walters, An Introduction to Ergodic Theory, volume 79 of Graduate Texts in Mathematics,, Springer-Verlag, (1982).   Google Scholar

[29]

B. Weiss, Intrinsically ergodic systems,, Bull. Amer. Math. Soc., 76 (1970), 1266.  doi: 10.1090/S0002-9904-1970-12632-5.  Google Scholar

[30]

B. Weiss, Subshifts of finite type and sofic systems,, Monatsh. Math., 77 (1973), 462.  doi: 10.1007/BF01295322.  Google Scholar

[1]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[2]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[3]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[4]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[5]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[6]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[7]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[8]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[9]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[10]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020389

[11]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[12]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[13]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[14]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[15]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[16]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[17]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[18]

Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175

[19]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[20]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]