November  2014, 34(11): 4487-4513. doi: 10.3934/dcds.2014.34.4487

Renormalizations of circle hoemomorphisms with a single break point

1. 

Faculty of Mathematics and Mechanics. Samarkand State University, Boulevard Street 15, 140104 Samarkand, Uzbekistan

2. 

Turin Politechnic University in Tashkent, Kichik halqa yuli 17, 100095 Tashkent, Uzbekistan

3. 

Institut für Theoretische Physik, TU Clausthal, Leibnizstrasse 10, D-38678 Clausthal-Zellerfeld, Germany

Received  November 2013 Revised  March 2014 Published  May 2014

Let $f$ be an orientation preserving circle homeomorphism with a single break point $x_b,$ i.e. with a jump in the first derivative $f'$ at the point $x_b,$ and with irrational rotation number $\rho=\rho_{f}.$ Suppose that $f$ satisfies the Katznelson and Ornstein smoothness conditions, i.e. $f'$ is absolutely continuous on $[x_b,x_b+1]$ and $f''(x)\in \mathbb{L}^{p}([0,1), d\ell)$ for some $p>1$, where $\ell$ is Lebesque measure. We prove, that the renormalizations of $f$ are approximated by linear-fractional functions in $\mathbb{C}^{1+L^{1}}$, that means, $f$ is approximated in $C^{1}-$ norm and $f''$ is appoximated in $L^{1}-$ norm. Also it is shown, that renormalizations of circle diffeomorphisms with irrational rotation number satisfying the Katznelson and Ornstein smoothness conditions are close to linear functions in $\mathbb{C}^{1+L^{1}}$- norm.
Citation: Abdumajid Begmatov, Akhtam Dzhalilov, Dieter Mayer. Renormalizations of circle hoemomorphisms with a single break point. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4487-4513. doi: 10.3934/dcds.2014.34.4487
References:
[1]

V. I. Arnol'd, Small denominators: I. Mappings from the circle onto itself, Izv. Akad. Nauk SSSR, Ser. Mat., 25 (1961), 21-86.

[2]

H. Akhadkulov, A. Dzhalilov and D. Mayer, On conjugations of circle homeomorphisms with two break points, Ergod. Theor. and Dynam. Syst., 34 (2014), 725-741. doi: 10.1017/etds.2012.159.

[3]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4615-6927-5.

[4]

A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., 11 (1932), 333-375.

[5]

A. A. Dzhalilov and K. M. Khanin, On invariant measure for homeomorphisms of a circle with a point of break, Funct. Anal. Appl., 32 (1998), 153-161. doi: 10.1007/BF02463336.

[6]

A. A. Dzhalilov and I. Liousse, Circle homeomorphismswith two break points, Nonlinearity, 19 (2006), 1951-1968. doi: 10.1088/0951-7715/19/8/010.

[7]

A. A. Dzhalilov, I. Liousse and D. Mayer, Singular measures of piecewise smooth circle homeomorphisms with two break points, Discrete and continuous dynamical systems, 24 (2009), 381-403. doi: 10.3934/dcds.2009.24.381.

[8]

A. A. Dzhalilov, H. Akin and S. Temir, Conjugations between circle maps with a single break point, Journal of Mathematical Analysis and Applications, 366 (2010), 1-10. doi: 10.1016/j.jmaa.2009.12.050.

[9]

A. A. Dzhalilov, D. Mayer and U. A. Safarov, Piecwise-smooth circle homeomorphisms with several break points, Izvestiya RAN: Ser. Mat., 76 (2012), 101-120, translation of Izvestiya: Mathematics, 76 (2012), 94-112.

[10]

E. de Faria and W. de Melo, Rigidity of critical circle mappings, I. J. Eur. Math. Soc. (JEMS), 1 (1999), 339-392. doi: 10.1007/s100970050011.

[11]

M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Etudes Sci. Publ. Math., 49 (1979), 5-233. doi: 10.1007/BF02684798.

[12]

Y. Katznelson and D. Ornstein, The differentability continuity of the conjugation of certain diffeomorphisms of the circle, Ergod. Theor. Dyn. Syst., 9 (1989), 643-680. doi: 10.1017/S0143385700005277.

[13]

Y. Katznelson and D. Ornstein, The absolute continuity of the conjugation of certain diffeomorphisms of the circle, Ergod. Theor. Dyn. Syst., 9 (1989), 681-690 . doi: 10.1017/S0143385700005289.

[14]

K. M. Khanin and Ya. G. Sinai, Smoothness of conjugacies of diffeomorphisms of the circle with rotations, Russ. Math. Surv., 44 (1989), 69-99, translation of Usp. Mat. Nauk, 44 (1989), 57-82. doi: 10.1070/RM1989v044n01ABEH002008.

[15]

K. M. Khanin and E. B. Vul, Circle homeomorphisms with weak discontinuities, Advances in Soviet Mathematics, 3 (1991), 57-98.

[16]

K. M. Khanin and D. Khmelev, Renormalizations and Rigidity Theory for Circle Homeomorphisms with Singularities of the Break Type, Commun. Math. Phys., 235 (2003), 69-124. doi: 10.1007/s00220-003-0809-5.

[17]

I. Liousse, PL Homeomorphisms of the circle which are piecewise $C^1$ conjugate to irrational rotations, Bull. Braz. Math. Soc., 35 (2004), 269-280. doi: 10.1007/s00574-004-0014-y.

[18]

J. Stark, Smooth conjugacy and renormalization for diffeomorfisms of the circle, Nonlinearity, 1 (1988), 541-575. doi: 10.1088/0951-7715/1/4/004.

[19]

G. Swiatek, Rational rotation number for maps of the circle, Commun. Math. Phys., textbf{119} (1988), 109-128. doi: 10.1007/BF01218263.

[20]

M. Stein, Groups of piecewise linear homeomorphisms, Trans. A.M.S., 332 (1992), 477-514. doi: 10.1090/S0002-9947-1992-1094555-4.

[21]

A. Yu. Teplinskii and K. M. Khanin, Robust rigidity for circle diffeomorphisms with singularities, Inventiones mathematicae, 169 (2007), 193-218. doi: 10.1007/s00222-007-0047-0.

[22]

J. C. Yoccoz, Il n'y a pas de contre-exemple de Denjoy analytique, C. R. Acad. Sci. Paris, 298 (1984), 141-144.

show all references

References:
[1]

V. I. Arnol'd, Small denominators: I. Mappings from the circle onto itself, Izv. Akad. Nauk SSSR, Ser. Mat., 25 (1961), 21-86.

[2]

H. Akhadkulov, A. Dzhalilov and D. Mayer, On conjugations of circle homeomorphisms with two break points, Ergod. Theor. and Dynam. Syst., 34 (2014), 725-741. doi: 10.1017/etds.2012.159.

[3]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4615-6927-5.

[4]

A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., 11 (1932), 333-375.

[5]

A. A. Dzhalilov and K. M. Khanin, On invariant measure for homeomorphisms of a circle with a point of break, Funct. Anal. Appl., 32 (1998), 153-161. doi: 10.1007/BF02463336.

[6]

A. A. Dzhalilov and I. Liousse, Circle homeomorphismswith two break points, Nonlinearity, 19 (2006), 1951-1968. doi: 10.1088/0951-7715/19/8/010.

[7]

A. A. Dzhalilov, I. Liousse and D. Mayer, Singular measures of piecewise smooth circle homeomorphisms with two break points, Discrete and continuous dynamical systems, 24 (2009), 381-403. doi: 10.3934/dcds.2009.24.381.

[8]

A. A. Dzhalilov, H. Akin and S. Temir, Conjugations between circle maps with a single break point, Journal of Mathematical Analysis and Applications, 366 (2010), 1-10. doi: 10.1016/j.jmaa.2009.12.050.

[9]

A. A. Dzhalilov, D. Mayer and U. A. Safarov, Piecwise-smooth circle homeomorphisms with several break points, Izvestiya RAN: Ser. Mat., 76 (2012), 101-120, translation of Izvestiya: Mathematics, 76 (2012), 94-112.

[10]

E. de Faria and W. de Melo, Rigidity of critical circle mappings, I. J. Eur. Math. Soc. (JEMS), 1 (1999), 339-392. doi: 10.1007/s100970050011.

[11]

M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Etudes Sci. Publ. Math., 49 (1979), 5-233. doi: 10.1007/BF02684798.

[12]

Y. Katznelson and D. Ornstein, The differentability continuity of the conjugation of certain diffeomorphisms of the circle, Ergod. Theor. Dyn. Syst., 9 (1989), 643-680. doi: 10.1017/S0143385700005277.

[13]

Y. Katznelson and D. Ornstein, The absolute continuity of the conjugation of certain diffeomorphisms of the circle, Ergod. Theor. Dyn. Syst., 9 (1989), 681-690 . doi: 10.1017/S0143385700005289.

[14]

K. M. Khanin and Ya. G. Sinai, Smoothness of conjugacies of diffeomorphisms of the circle with rotations, Russ. Math. Surv., 44 (1989), 69-99, translation of Usp. Mat. Nauk, 44 (1989), 57-82. doi: 10.1070/RM1989v044n01ABEH002008.

[15]

K. M. Khanin and E. B. Vul, Circle homeomorphisms with weak discontinuities, Advances in Soviet Mathematics, 3 (1991), 57-98.

[16]

K. M. Khanin and D. Khmelev, Renormalizations and Rigidity Theory for Circle Homeomorphisms with Singularities of the Break Type, Commun. Math. Phys., 235 (2003), 69-124. doi: 10.1007/s00220-003-0809-5.

[17]

I. Liousse, PL Homeomorphisms of the circle which are piecewise $C^1$ conjugate to irrational rotations, Bull. Braz. Math. Soc., 35 (2004), 269-280. doi: 10.1007/s00574-004-0014-y.

[18]

J. Stark, Smooth conjugacy and renormalization for diffeomorfisms of the circle, Nonlinearity, 1 (1988), 541-575. doi: 10.1088/0951-7715/1/4/004.

[19]

G. Swiatek, Rational rotation number for maps of the circle, Commun. Math. Phys., textbf{119} (1988), 109-128. doi: 10.1007/BF01218263.

[20]

M. Stein, Groups of piecewise linear homeomorphisms, Trans. A.M.S., 332 (1992), 477-514. doi: 10.1090/S0002-9947-1992-1094555-4.

[21]

A. Yu. Teplinskii and K. M. Khanin, Robust rigidity for circle diffeomorphisms with singularities, Inventiones mathematicae, 169 (2007), 193-218. doi: 10.1007/s00222-007-0047-0.

[22]

J. C. Yoccoz, Il n'y a pas de contre-exemple de Denjoy analytique, C. R. Acad. Sci. Paris, 298 (1984), 141-144.

[1]

Malo Jézéquel. Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 927-958. doi: 10.3934/dcds.2019039

[2]

Akhtam Dzhalilov, Isabelle Liousse, Dieter Mayer. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 381-403. doi: 10.3934/dcds.2009.24.381

[3]

Qiudong Wang. The diffusion time of the connecting orbit around rotation number zero for the monotone twist maps. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 255-274. doi: 10.3934/dcds.2000.6.255

[4]

Michel Laurent, Arnaldo Nogueira. Rotation number of contracted rotations. Journal of Modern Dynamics, 2018, 12: 175-191. doi: 10.3934/jmd.2018007

[5]

Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617

[6]

Abdelhamid Adouani, Habib Marzougui. Computation of rotation numbers for a class of PL-circle homeomorphisms. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3399-3419. doi: 10.3934/dcds.2012.32.3399

[7]

Rafael De La Llave, Michael Shub, Carles Simó. Entropy estimates for a family of expanding maps of the circle. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 597-608. doi: 10.3934/dcdsb.2008.10.597

[8]

Alena Erchenko. Flexibility of Lyapunov exponents for expanding circle maps. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2325-2342. doi: 10.3934/dcds.2019098

[9]

Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099

[10]

Héctor E. Lomelí. Heteroclinic orbits and rotation sets for twist maps. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 343-354. doi: 10.3934/dcds.2006.14.343

[11]

Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 597-611. doi: 10.3934/dcds.2007.18.597

[12]

Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4051-4059. doi: 10.3934/dcds.2022045

[13]

Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5037-5055. doi: 10.3934/dcds.2021067

[14]

Jan J. Dijkstra and Jan van Mill. Homeomorphism groups of manifolds and Erdos space. Electronic Research Announcements, 2004, 10: 29-38.

[15]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

[16]

Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979

[17]

Joachim Escher, Boris Kolev. Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. Journal of Geometric Mechanics, 2014, 6 (3) : 335-372. doi: 10.3934/jgm.2014.6.335

[18]

Stefano Galatolo, Alfonso Sorrentino. Quantitative statistical stability and linear response for irrational rotations and diffeomorphisms of the circle. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 815-839. doi: 10.3934/dcds.2021138

[19]

M . Bartušek, John R. Graef. Some limit-point/limit-circle results for third order differential equations. Conference Publications, 2001, 2001 (Special) : 31-38. doi: 10.3934/proc.2001.2001.31

[20]

Fawwaz Batayneh, Cecilia González-Tokman. On the number of invariant measures for random expanding maps in higher dimensions. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5887-5914. doi: 10.3934/dcds.2021100

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (1)

[Back to Top]