November  2014, 34(11): 4515-4535. doi: 10.3934/dcds.2014.34.4515

Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation

1. 

Institut für Mathematik, Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt am Wörthersee, Austria, Austria

Received  November 2013 Revised  March 2014 Published  May 2014

We consider a nonlinear fourth order in space partial differential equation arising in the context of the modeling of nonlinear acoustic wave propagation in thermally relaxing viscous fluids.
    We use the theory of operator semigroups in order to investigate the linearization of the underlying model and see that the underlying semigroup is analytic. This leads to exponential decay results for the linear homogeneous equation.
    Moreover, we prove local in time well-posedness of the model under the assumption that initial data are sufficiently small by employing a fixed point argument. Global in time well-posedness is obtained by performing energy estimates and using the classical barrier method, again for sufficiently small initial data.
    Additionally, we provide results concerning exponential decay of solutions of the nonlinear equation.
Citation: Rainer Brunnhuber, Barbara Kaltenbacher. Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4515-4535. doi: 10.3934/dcds.2014.34.4515
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second Edition,, Elsevier/Academic Press, (2003).   Google Scholar

[2]

G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping,, Quarterly of Applied Mathematics, 39 (): 433.   Google Scholar

[3]

S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems,, Pacific Journal of Mathematics, 136 (1989), 15.  doi: 10.2140/pjm.1989.136.15.  Google Scholar

[4]

F. Coulouvrat, On the equations of nonlinear acoustics,, Journal d'Acoustique, 5 (1992), 321.   Google Scholar

[5]

D. G. Crighton, Model equations of nonlinear acoustics,, Annual Review of Fluid Mechanics, 11 (1979), 11.  doi: 10.1146/annurev.fl.11.010179.000303.  Google Scholar

[6]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer, (2000).   Google Scholar

[7]

L. C. Evans, Partial Differential Equations, Second Edition,, American Mathematical Society, (2010).   Google Scholar

[8]

H. O. Fattorini, The Cauchy Problem,, Addison-Wesley, (1983).   Google Scholar

[9]

M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics,, Academic Press, (1997).  doi: 10.1121/1.426968.  Google Scholar

[10]

P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solutions, shock formation and solution bifurcation,, Physics Letters A, 326 (2004), 77.  doi: 10.1016/j.physleta.2004.03.067.  Google Scholar

[11]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation,, Discrete and Continuous Dynamical Systems Series S, 2 (2009), 503.  doi: 10.3934/dcdss.2009.2.503.  Google Scholar

[12]

B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay,, Mathematische Nachrichten, 285 (2012), 295.  doi: 10.1002/mana.201000007.  Google Scholar

[13]

B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions,, DCDS Supplement, II (2011), 763.   Google Scholar

[14]

B. Kaltenbacher, I. Lasiecka and R. Marchand, Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation,, Control and Cybernetics, 40 (2011), 971.   Google Scholar

[15]

B. Kaltenbacher, I. Lasiecka and M. K. Pospieszahlska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound,, Mathematical Models and Methods in Applied Sciences, 22 (2012).  doi: 10.1142/S0218202512500352.  Google Scholar

[16]

M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators,, Springer, (2004).  doi: 10.1007/978-3-662-05358-4.  Google Scholar

[17]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, Masson-John Wiley, (1994).   Google Scholar

[18]

V. P. Kuznetsov, Equations of nonlinear acoustics,, Soviet physics. Acoustics, 16 (1971), 467.   Google Scholar

[19]

J. Liang and T. Xiao, Semigroups arising from elastic systems with dissipation,, Computers and Mathematics with Applications, 33 (1997), 1.  doi: 10.1016/S0898-1221(97)00072-2.  Google Scholar

[20]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bulletin des Sciences Mathématiques, 136 (2012), 521.   Google Scholar

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[22]

A. Rozanova, The Khokhlov-Zabolotskaya-Kuznetsov equation,, Comptes Rendus Mathematique, 344 (2007), 337.  doi: 10.1016/j.crma.2007.01.010.  Google Scholar

[23]

S. Tjøtta, Higher order model equations in nonlinear acoustics,, Acta Acustica united with Acustica, 87 (2001), 316.   Google Scholar

[24]

P. J. Westervelt, Parametric acoustic array,, Journal of the Acoustical Society of America, 35 (1963), 535.  doi: 10.1121/1.1918525.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second Edition,, Elsevier/Academic Press, (2003).   Google Scholar

[2]

G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping,, Quarterly of Applied Mathematics, 39 (): 433.   Google Scholar

[3]

S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems,, Pacific Journal of Mathematics, 136 (1989), 15.  doi: 10.2140/pjm.1989.136.15.  Google Scholar

[4]

F. Coulouvrat, On the equations of nonlinear acoustics,, Journal d'Acoustique, 5 (1992), 321.   Google Scholar

[5]

D. G. Crighton, Model equations of nonlinear acoustics,, Annual Review of Fluid Mechanics, 11 (1979), 11.  doi: 10.1146/annurev.fl.11.010179.000303.  Google Scholar

[6]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,, Springer, (2000).   Google Scholar

[7]

L. C. Evans, Partial Differential Equations, Second Edition,, American Mathematical Society, (2010).   Google Scholar

[8]

H. O. Fattorini, The Cauchy Problem,, Addison-Wesley, (1983).   Google Scholar

[9]

M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics,, Academic Press, (1997).  doi: 10.1121/1.426968.  Google Scholar

[10]

P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solutions, shock formation and solution bifurcation,, Physics Letters A, 326 (2004), 77.  doi: 10.1016/j.physleta.2004.03.067.  Google Scholar

[11]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation,, Discrete and Continuous Dynamical Systems Series S, 2 (2009), 503.  doi: 10.3934/dcdss.2009.2.503.  Google Scholar

[12]

B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay,, Mathematische Nachrichten, 285 (2012), 295.  doi: 10.1002/mana.201000007.  Google Scholar

[13]

B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions,, DCDS Supplement, II (2011), 763.   Google Scholar

[14]

B. Kaltenbacher, I. Lasiecka and R. Marchand, Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation,, Control and Cybernetics, 40 (2011), 971.   Google Scholar

[15]

B. Kaltenbacher, I. Lasiecka and M. K. Pospieszahlska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound,, Mathematical Models and Methods in Applied Sciences, 22 (2012).  doi: 10.1142/S0218202512500352.  Google Scholar

[16]

M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators,, Springer, (2004).  doi: 10.1007/978-3-662-05358-4.  Google Scholar

[17]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, Masson-John Wiley, (1994).   Google Scholar

[18]

V. P. Kuznetsov, Equations of nonlinear acoustics,, Soviet physics. Acoustics, 16 (1971), 467.   Google Scholar

[19]

J. Liang and T. Xiao, Semigroups arising from elastic systems with dissipation,, Computers and Mathematics with Applications, 33 (1997), 1.  doi: 10.1016/S0898-1221(97)00072-2.  Google Scholar

[20]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bulletin des Sciences Mathématiques, 136 (2012), 521.   Google Scholar

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[22]

A. Rozanova, The Khokhlov-Zabolotskaya-Kuznetsov equation,, Comptes Rendus Mathematique, 344 (2007), 337.  doi: 10.1016/j.crma.2007.01.010.  Google Scholar

[23]

S. Tjøtta, Higher order model equations in nonlinear acoustics,, Acta Acustica united with Acustica, 87 (2001), 316.   Google Scholar

[24]

P. J. Westervelt, Parametric acoustic array,, Journal of the Acoustical Society of America, 35 (1963), 535.  doi: 10.1121/1.1918525.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[5]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[6]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[9]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[10]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[11]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[12]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[13]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[14]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[19]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[20]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]