Citation: |
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second Edition, Elsevier/Academic Press, Amsterdam, 2003. |
[2] |
G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping, Quarterly of Applied Mathematics, 39 (1981/82), 433-454. |
[3] |
S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific Journal of Mathematics, 136 (1989), 15-55.doi: 10.2140/pjm.1989.136.15. |
[4] |
F. Coulouvrat, On the equations of nonlinear acoustics, Journal d'Acoustique, 5 (1992), 321-359. |
[5] |
D. G. Crighton, Model equations of nonlinear acoustics, Annual Review of Fluid Mechanics, 11 (1979), 11-33.doi: 10.1146/annurev.fl.11.010179.000303. |
[6] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000. |
[7] |
L. C. Evans, Partial Differential Equations, Second Edition, American Mathematical Society, Providence, 2010. |
[8] |
H. O. Fattorini, The Cauchy Problem, Addison-Wesley, Massachusetts, 1983. |
[9] |
M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics, Academic Press, New York, 1997.doi: 10.1121/1.426968. |
[10] |
P. M. Jordan, An analytical study of Kuznetsov's equation: Diffusive solutions, shock formation and solution bifurcation, Physics Letters A, 326 (2004), 77-84.doi: 10.1016/j.physleta.2004.03.067. |
[11] |
B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation, Discrete and Continuous Dynamical Systems Series S, 2 (2009), 503-523.doi: 10.3934/dcdss.2009.2.503. |
[12] |
B. Kaltenbacher and I. Lasiecka, An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; exponential decay, Mathematische Nachrichten, 285 (2012), 295-321.doi: 10.1002/mana.201000007. |
[13] |
B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions, DCDS Supplement, Proceedings of the 8th AIMS Conference, II (2011), 763-773. |
[14] |
B. Kaltenbacher, I. Lasiecka and R. Marchand, Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation, Control and Cybernetics, 40 (2011), 971-988. |
[15] |
B. Kaltenbacher, I. Lasiecka and M. K. Pospieszahlska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1250035, 34 pages.doi: 10.1142/S0218202512500352. |
[16] |
M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators, Springer, Berlin, 2004.doi: 10.1007/978-3-662-05358-4. |
[17] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley, Paris-Chicester, 1994. |
[18] |
V. P. Kuznetsov, Equations of nonlinear acoustics, Soviet physics. Acoustics, 16 (1971), 467-470. |
[19] |
J. Liang and T. Xiao, Semigroups arising from elastic systems with dissipation, Computers and Mathematics with Applications, 33 (1997), 1-9.doi: 10.1016/S0898-1221(97)00072-2. |
[20] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques, 136 (2012), 521-573. |
[21] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.doi: 10.1007/978-1-4612-5561-1. |
[22] |
A. Rozanova, The Khokhlov-Zabolotskaya-Kuznetsov equation, Comptes Rendus Mathematique, 344 (2007), 337-342.doi: 10.1016/j.crma.2007.01.010. |
[23] |
S. Tjøtta, Higher order model equations in nonlinear acoustics, Acta Acustica united with Acustica, 87 (2001), 316-321. |
[24] |
P. J. Westervelt, Parametric acoustic array, Journal of the Acoustical Society of America, 35 (1963), 535-537.doi: 10.1121/1.1918525. |