-
Previous Article
Robust attractors without dominated splitting on manifolds with boundary
- DCDS Home
- This Issue
-
Next Article
Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation
Localization, smoothness, and convergence to equilibrium for a thin film equation
1. | Department of Mathematics, Hill Center, Rutgers University, Piscataway, NJ 08854, United States |
2. | Department of Mathematics, Faculty of Education, Zirve University, Gaziantep, Turkey |
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the Wasserstein space of probability measures,, Birkhäuser Verlag, (2005).
|
[2] |
L. Ansini and L. Giacomelli, Doubly nonlinear thin-film equation in one space dimension,, Arch. Ration. Mech. Anal., 173 (2004), 89.
doi: 10.1007/s00205-004-0313-x. |
[3] |
J. Becker and G. Grün, The thin-film equation: Recent advances and some new perspectives,, J. Phys.: Condens. Matter, 17 (2005), 291.
doi: 10.1088/0953-8984/17/9/002. |
[4] |
F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations,, J. Diff. Eqns., 83 (1990), 179.
doi: 10.1016/0022-0396(90)90074-Y. |
[5] |
A. Bertozzi, The mathematics of moving contact lines in thin liquid films,, Notices AMS, 45 (1998), 689.
|
[6] |
A. Bertozzi and M. Pugh, The lubrication approximation for thin viscous films: Regularity and long time behavior of weak solutions,, Comm. Pure Appl. Math., 49 (1996), 85.
doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2. |
[7] |
M. Bertsch, R. Dal Passo, H. Garcke and G. Grün, The thin viscous flow equation in higher space dimensions,, Adv. Diff. Eqns., 3 (1998), 417.
|
[8] |
M. Boutat, S. Hilout, J. E. Rakotoson and J. M. Rakotoson, A generalized thin-film equation in multidimensional space,, Nonlinear Anal. TMA, 69 (2008), 1268.
doi: 10.1016/j.na.2007.06.028. |
[9] |
Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions,, Comm. Pure Appl. Math., 44 (1991), 375.
doi: 10.1002/cpa.3160440402. |
[10] |
E. A. Carlen and S. Ulusoy, Asymptotic equipartition and long time behavior of solutions of a thin-film equation,, J. Diff. Eqns., 241 (2007), 279.
doi: 10.1016/j.jde.2007.07.005. |
[11] |
J. A. Carrillo and G. Toscani, Long-time asymptotics for strong solutions of the thin-film equation,, Comm. Math. Phys., 225 (2002), 551.
doi: 10.1007/s002200100591. |
[12] |
M. Chugunova, M. Pugh and R. M. Taranets, Nonnegative solutions for a long-wave unstable thin film equation with convection,, SIAM J. Math. Anal., 42 (2010), 1826.
doi: 10.1137/090777062. |
[13] |
R. Dal Passo, H. Garcke and G. Grün, On a fourth-order degenerate parabolic equation: Global entropy estimates, existence, and qualitative behavior of solutions,, SIAM J. Math. Anal., 29 (1998), 321.
doi: 10.1137/S0036141096306170. |
[14] |
L. Giacomelli and F. Otto, Variational formulation for the lubrication approximation of the Hele-Shaw flow,, Calc. Var. Part. Diff. Eq., 13 (2001), 377.
doi: 10.1007/s005260000077. |
[15] |
G. Grün, Droplet spreading under weak slippage-existence for the Cauchy problem,, Comm. PDEs, 29 (2004), 1697.
doi: 10.1081/PDE-200040193. |
[16] |
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1.
doi: 10.1137/S0036141096303359. |
[17] |
R. Laugesen, New dissipated energies for the thin fluid film equation,, Comm. Pure Appl. Analysis, 4 (2005), 613.
doi: 10.3934/cpaa.2005.4.613. |
[18] |
D. Matthes, R. J. McCann and G. Savaré, A family of nonlinear fourth order equations of gradient flow type,, Comm. PDEs, 34 (2009), 1352.
doi: 10.1080/03605300903296256. |
[19] |
R. J. McCann, A convexity principle for interacting gases,, Adv. Math., 128 (1997), 153.
doi: 10.1006/aima.1997.1634. |
[20] |
T. G. Myers, Thin films with high surface tension,, SIAM Rev., 40 (1998), 441.
doi: 10.1137/S003614459529284X. |
[21] |
F. Otto, Lubrication approximation with prescribed nonzero contact angle,, Comm. PDEs, 23 (1998), 2077.
doi: 10.1080/03605309808821411. |
[22] |
F. Otto, The geometry of dissipative evolution equations: The porous medium equation,, Comm. PDEs, 26 (2001), 101.
doi: 10.1081/PDE-100002243. |
[23] |
J. E. Rakotoson, J. M. Rakotoson and C. Verbeke, Higher order equations related to thin films: Blow-up and global existence, the influence of the initial data,, J. Diff. Eqns., 244 (2008), 2693.
doi: 10.1016/j.jde.2008.03.009. |
[24] |
N. F. Smyth and J. M. Hill, High-order nonlinear diffusion,, IMA J. Appl. Math., 40 (1988), 73.
doi: 10.1093/imamat/40.2.73. |
[25] |
A. Tudorascu, Lubrication approximation for viscous flows: asyptotic behavior of nonnegative solutions,, Comm. PDEs, 32 (2007), 1147.
doi: 10.1080/03605300600987272. |
[26] |
S. Ulusoy, A new family of higher order nonlinear degenerate parabolic equations,, Nonlinearity, 20 (2007), 685.
doi: 10.1088/0951-7715/20/3/007. |
[27] |
S. Ulusoy, On a new family of higher order nonlinear degenerate parabolic equations,, Appl. Math. Res. eXpress, 2007 (2007).
doi: 10.1088/0951-7715/20/3/007. |
[28] |
S. Ulusoy, The Mathematical Theory of Thin Film Evolution,, Ph.D thesis, (2007).
|
[29] |
C. Villani, Topics in Optimal Transportation,, Grad. Stud. Math., 58 (2003).
doi: 10.1007/b12016. |
[30] |
J. L. Vazquez, The Porous Medium Equation. Mathematical Theory,, Oxford Mathematical Monographs. The Clarendon Press, (2007).
|
show all references
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the Wasserstein space of probability measures,, Birkhäuser Verlag, (2005).
|
[2] |
L. Ansini and L. Giacomelli, Doubly nonlinear thin-film equation in one space dimension,, Arch. Ration. Mech. Anal., 173 (2004), 89.
doi: 10.1007/s00205-004-0313-x. |
[3] |
J. Becker and G. Grün, The thin-film equation: Recent advances and some new perspectives,, J. Phys.: Condens. Matter, 17 (2005), 291.
doi: 10.1088/0953-8984/17/9/002. |
[4] |
F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations,, J. Diff. Eqns., 83 (1990), 179.
doi: 10.1016/0022-0396(90)90074-Y. |
[5] |
A. Bertozzi, The mathematics of moving contact lines in thin liquid films,, Notices AMS, 45 (1998), 689.
|
[6] |
A. Bertozzi and M. Pugh, The lubrication approximation for thin viscous films: Regularity and long time behavior of weak solutions,, Comm. Pure Appl. Math., 49 (1996), 85.
doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2. |
[7] |
M. Bertsch, R. Dal Passo, H. Garcke and G. Grün, The thin viscous flow equation in higher space dimensions,, Adv. Diff. Eqns., 3 (1998), 417.
|
[8] |
M. Boutat, S. Hilout, J. E. Rakotoson and J. M. Rakotoson, A generalized thin-film equation in multidimensional space,, Nonlinear Anal. TMA, 69 (2008), 1268.
doi: 10.1016/j.na.2007.06.028. |
[9] |
Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions,, Comm. Pure Appl. Math., 44 (1991), 375.
doi: 10.1002/cpa.3160440402. |
[10] |
E. A. Carlen and S. Ulusoy, Asymptotic equipartition and long time behavior of solutions of a thin-film equation,, J. Diff. Eqns., 241 (2007), 279.
doi: 10.1016/j.jde.2007.07.005. |
[11] |
J. A. Carrillo and G. Toscani, Long-time asymptotics for strong solutions of the thin-film equation,, Comm. Math. Phys., 225 (2002), 551.
doi: 10.1007/s002200100591. |
[12] |
M. Chugunova, M. Pugh and R. M. Taranets, Nonnegative solutions for a long-wave unstable thin film equation with convection,, SIAM J. Math. Anal., 42 (2010), 1826.
doi: 10.1137/090777062. |
[13] |
R. Dal Passo, H. Garcke and G. Grün, On a fourth-order degenerate parabolic equation: Global entropy estimates, existence, and qualitative behavior of solutions,, SIAM J. Math. Anal., 29 (1998), 321.
doi: 10.1137/S0036141096306170. |
[14] |
L. Giacomelli and F. Otto, Variational formulation for the lubrication approximation of the Hele-Shaw flow,, Calc. Var. Part. Diff. Eq., 13 (2001), 377.
doi: 10.1007/s005260000077. |
[15] |
G. Grün, Droplet spreading under weak slippage-existence for the Cauchy problem,, Comm. PDEs, 29 (2004), 1697.
doi: 10.1081/PDE-200040193. |
[16] |
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1.
doi: 10.1137/S0036141096303359. |
[17] |
R. Laugesen, New dissipated energies for the thin fluid film equation,, Comm. Pure Appl. Analysis, 4 (2005), 613.
doi: 10.3934/cpaa.2005.4.613. |
[18] |
D. Matthes, R. J. McCann and G. Savaré, A family of nonlinear fourth order equations of gradient flow type,, Comm. PDEs, 34 (2009), 1352.
doi: 10.1080/03605300903296256. |
[19] |
R. J. McCann, A convexity principle for interacting gases,, Adv. Math., 128 (1997), 153.
doi: 10.1006/aima.1997.1634. |
[20] |
T. G. Myers, Thin films with high surface tension,, SIAM Rev., 40 (1998), 441.
doi: 10.1137/S003614459529284X. |
[21] |
F. Otto, Lubrication approximation with prescribed nonzero contact angle,, Comm. PDEs, 23 (1998), 2077.
doi: 10.1080/03605309808821411. |
[22] |
F. Otto, The geometry of dissipative evolution equations: The porous medium equation,, Comm. PDEs, 26 (2001), 101.
doi: 10.1081/PDE-100002243. |
[23] |
J. E. Rakotoson, J. M. Rakotoson and C. Verbeke, Higher order equations related to thin films: Blow-up and global existence, the influence of the initial data,, J. Diff. Eqns., 244 (2008), 2693.
doi: 10.1016/j.jde.2008.03.009. |
[24] |
N. F. Smyth and J. M. Hill, High-order nonlinear diffusion,, IMA J. Appl. Math., 40 (1988), 73.
doi: 10.1093/imamat/40.2.73. |
[25] |
A. Tudorascu, Lubrication approximation for viscous flows: asyptotic behavior of nonnegative solutions,, Comm. PDEs, 32 (2007), 1147.
doi: 10.1080/03605300600987272. |
[26] |
S. Ulusoy, A new family of higher order nonlinear degenerate parabolic equations,, Nonlinearity, 20 (2007), 685.
doi: 10.1088/0951-7715/20/3/007. |
[27] |
S. Ulusoy, On a new family of higher order nonlinear degenerate parabolic equations,, Appl. Math. Res. eXpress, 2007 (2007).
doi: 10.1088/0951-7715/20/3/007. |
[28] |
S. Ulusoy, The Mathematical Theory of Thin Film Evolution,, Ph.D thesis, (2007).
|
[29] |
C. Villani, Topics in Optimal Transportation,, Grad. Stud. Math., 58 (2003).
doi: 10.1007/b12016. |
[30] |
J. L. Vazquez, The Porous Medium Equation. Mathematical Theory,, Oxford Mathematical Monographs. The Clarendon Press, (2007).
|
[1] |
Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511 |
[2] |
Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449 |
[3] |
Andrey Shishkov. Waiting time of propagation and the backward motion of interfaces in thin-film flow theory. Conference Publications, 2007, 2007 (Special) : 938-945. doi: 10.3934/proc.2007.2007.938 |
[4] |
Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure & Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51 |
[5] |
Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 919-933. doi: 10.3934/dcdss.2017047 |
[6] |
Marina Chugunova, Roman M. Taranets. New dissipated energy for the unstable thin film equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 613-624. doi: 10.3934/cpaa.2011.10.613 |
[7] |
Richard S. Laugesen. New dissipated energies for the thin fluid film equation. Communications on Pure & Applied Analysis, 2005, 4 (3) : 613-634. doi: 10.3934/cpaa.2005.4.613 |
[8] |
Changchun Liu, Jingxue Yin, Juan Zhou. Existence of weak solutions for a generalized thin film equation. Communications on Pure & Applied Analysis, 2007, 6 (2) : 465-480. doi: 10.3934/cpaa.2007.6.465 |
[9] |
Jian-Guo Liu, Jinhuan Wang. Global existence for a thin film equation with subcritical mass. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1461-1492. doi: 10.3934/dcdsb.2017070 |
[10] |
Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305 |
[11] |
Huiqiang Jiang. Energy minimizers of a thin film equation with born repulsion force. Communications on Pure & Applied Analysis, 2011, 10 (2) : 803-815. doi: 10.3934/cpaa.2011.10.803 |
[12] |
Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577 |
[13] |
Lihua Min, Xiaoping Yang. Finite speed of propagation and algebraic time decay of solutions to a generalized thin film equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 543-566. doi: 10.3934/cpaa.2014.13.543 |
[14] |
Sergey Degtyarev. Classical solvability of the multidimensional free boundary problem for the thin film equation with quadratic mobility in the case of partial wetting. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3625-3699. doi: 10.3934/dcds.2017156 |
[15] |
Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987 |
[16] |
P. Álvarez-Caudevilla, J. D. Evans, V. A. Galaktionov. The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 807-827. doi: 10.3934/dcds.2015.35.807 |
[17] |
Sergey A. Denisov. Infinite superlinear growth of the gradient for the two-dimensional Euler equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 755-764. doi: 10.3934/dcds.2009.23.755 |
[18] |
Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071 |
[19] |
Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013 |
[20] |
Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]