\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Robust attractors without dominated splitting on manifolds with boundary

Abstract / Introduction Related Papers Cited by
  • In this paper we prove that there exists a positive integer $k$ with the following property: Every compact $3$-manifold with boundary carries a $C^\infty$ vector field exhibiting a $C^k$-robust attractor without dominated splitting in a robust sense.
    Mathematics Subject Classification: Primary: 34D45, 37D30; Secondary: 37C10, 37F15, 37D99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. S. Afraimovich, V. V. Bykov and L. P. Shilnikov, On attracting structurally unstable limit sets of Lorenz attractor type, Trudy Moskov. Mat. Obshch., 44 (1982), 150-212 (Russian).

    [2]

    V. Araújo and M. J. Pacifico, Three-dimensional Flows, Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series], 53. Springer, Heidelberg, 2010.doi: 10.1007/978-3-642-11414-4.

    [3]

    R. Bamón, R. Labarca, R. Mańé and M.J. Pacífico, The explosion of singulay cycles, Inst. Hautes Études Sci. Publ. Math., 78 (1993), 207-232.

    [4]

    S. Bautista, The geometric Lorenz attractor is a homoclinic class, Bol. Mat. (N.S.), 11 (2004), 69-78.

    [5]

    C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective, Encyclopaedia of Mathematical Sciences,102, Mathematical Physics III, Springer-Verlag, Berlin, 2005.

    [6]

    D. Carrasco-Olivera, C. A. Morales and B. San Martín, Singular cycles and $C^k$-robust transitive set on manifold with boundary, Communications in Contemporary Mathematics, 13 (2011), 191-211.doi: 10.1142/S0219199711004233.

    [7]

    C. I. Doering, Persistently transitive vector fields on three-dimensional manifolds, In Procs. on Dynamical Systems and Bifurcations Theory, 160 (1987), 59-89.

    [8]

    J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 59-72.

    [9]

    M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583. Springer-Verlag, Berlin-New York, 1977

    [10]

    M. Milnor, On the concept of attractor, Comm. Math. Phys., 99 (1985), 177-195.doi: 10.1007/BF01212280.

    [11]

    C. A. Morales, Sufficient conditions for a partially hyperbolic attractor to be a homoclinic class, J. Differential Equations, 249 (2010), 2005-2020.doi: 10.1016/j.jde.2010.05.014.

    [12]

    C. A. Morales, M. J. Pacifico and E. R. Pujals, Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math., 160 (2004), 375-432.doi: 10.4007/annals.2004.160.375.

    [13]

    C. A. Morales, M. J. Pacifico and E. R. Pujals, On $C^1$ robust singular transitive sets for three-dimensional flows, C. R. Acad. Sci. Paris, 326 (1998), 81-86.doi: 10.1016/S0764-4442(97)82717-6.

    [14]

    C. A. Morales, M. J. Pacifico and E. R. Pujals, Singular hyperbolic systems, Proc. Am. Math. Soc., 127 (1999), 3393-3401.doi: 10.1090/S0002-9939-99-04936-9.

    [15]

    A. Rovella, The dynamics of perturbations of the contracting Lorenz attractors, Bol. Soc. Bras. Math., 24 (1993), 233-259.doi: 10.1007/BF01237679.

    [16]

    S. Sternberg, On the structure of local homeomorphism of eucliden $n$-spane II, Am. Journal Math., 80 (1958), 623-631.doi: 10.2307/2372774.

    [17]

    T. Vivier, Flots robustement transitifs sur les variétés compactes (French) [Robustly transitive flows on compact manifolds], Comptes Rendus Acad. Sci. Paris, 337 (2003), 791-796.doi: 10.1016/j.crma.2003.10.001.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(54) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return