-
Previous Article
Delay-dependent stability criteria for neutral delay differential and difference equations
- DCDS Home
- This Issue
-
Next Article
Robust attractors without dominated splitting on manifolds with boundary
On ill-posedness for the generalized BBM equation
1. | Instituto de Matemática - UFRJ Av. Horácio Macedo, Centro de Tecnologia, Cidade Universitária, Ilha do Fundão, 21941-972 Rio de Janeiro, RJ, Brazil |
2. | Departamento de Matemática, Universidade Estadual de Campinas (UNICAMP), Rua Sergio Buarque de Holanda, 651, 13083-859, Campinas, SP, Brazil |
References:
[1] |
A. A. Alazman, J. P. Albert, J. L. Bona, M. Chen and J. Wu, Comparisons between the BBM equation and a Boussinesq system,, Adv. Differential Equations, 11 (2006), 121.
|
[2] |
J. Angulo Pava, C. Banquet and M. Scialom, Stability for the modified and fourth Benjamin-Bona-Mahony equations,, Discrete Contin. Dyn. Syst., 30 (2011), 851.
doi: 10.3934/dcds.2011.30.851. |
[3] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Phil. Trans. Royal Soc. London, 272 (1972), 47.
doi: 10.1098/rsta.1972.0032. |
[4] |
J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves,, Philos. Trans. Royal Soc. London Series A, 302 (1981), 457.
doi: 10.1098/rsta.1981.0178. |
[5] |
J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation,, Discrete and Continuous Dynamical Systems, 23 (2009), 1241.
doi: 10.3934/dcds.2009.23.1241. |
[6] |
J. Bona and H. Chen, Well-posedness for regularized nonlinear dispersive wave equations,, Disc. Cont. Dynamical Systems, 23 (2009), 1253.
doi: 10.3934/dcds.2009.23.1253. |
[7] |
J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data,, Selecta Math. New Ser., 3 (1997), 115.
doi: 10.1007/s000290050008. |
[8] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation,, Geom. Funct. Anal., 3 (1993), 209.
doi: 10.1007/BF01895688. |
[9] |
W. Chen and J. Li, On the low regularity of the modified Korteweg-de Vries equation with a dissipative term,, J. Diff. Equations, 240 (2007), 125.
doi: 10.1016/j.jde.2007.05.030. |
[10] |
M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations,, Amer. J. Math., 125 (2003), 1235.
doi: 10.1353/ajm.2003.0040. |
[11] |
L. Molinet, A note on the inviscid limit of the Benjamin-Ono-Burgers equation in the energy space,, , 141 (2013), 2793.
doi: 10.1090/S0002-9939-2013-11693-X. |
[12] |
L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers Equation,, Int. Math. Research Notices, (2002), 1979.
doi: 10.1155/S1073792802112104. |
[13] |
L. Molinet, F. Ribaud and A Youssfi, Ill-posedness issue for a class of parabolic equations,, Proceedings of the Royal Society of Edinburgh, 132 (2002), 1407.
|
[14] |
L. Molinet, J. -C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations,, SIAM. J. Math. Anal., 33 (2001), 982.
doi: 10.1137/S0036141001385307. |
[15] |
M. Panthee, On the ill-posedness result for the BBM equation,, Discrete Contin. Dyn. Syst., 30 (2011), 253.
doi: 10.3934/dcds.2011.30.253. |
[16] |
N. Tzvetkov, Remark on the local ill-posedness for KdV equation,, C. R. Acad. Sci. Paris Ser. I Math., 329 (1999), 1043.
doi: 10.1016/S0764-4442(00)88471-2. |
show all references
References:
[1] |
A. A. Alazman, J. P. Albert, J. L. Bona, M. Chen and J. Wu, Comparisons between the BBM equation and a Boussinesq system,, Adv. Differential Equations, 11 (2006), 121.
|
[2] |
J. Angulo Pava, C. Banquet and M. Scialom, Stability for the modified and fourth Benjamin-Bona-Mahony equations,, Discrete Contin. Dyn. Syst., 30 (2011), 851.
doi: 10.3934/dcds.2011.30.851. |
[3] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Phil. Trans. Royal Soc. London, 272 (1972), 47.
doi: 10.1098/rsta.1972.0032. |
[4] |
J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves,, Philos. Trans. Royal Soc. London Series A, 302 (1981), 457.
doi: 10.1098/rsta.1981.0178. |
[5] |
J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation,, Discrete and Continuous Dynamical Systems, 23 (2009), 1241.
doi: 10.3934/dcds.2009.23.1241. |
[6] |
J. Bona and H. Chen, Well-posedness for regularized nonlinear dispersive wave equations,, Disc. Cont. Dynamical Systems, 23 (2009), 1253.
doi: 10.3934/dcds.2009.23.1253. |
[7] |
J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data,, Selecta Math. New Ser., 3 (1997), 115.
doi: 10.1007/s000290050008. |
[8] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation,, Geom. Funct. Anal., 3 (1993), 209.
doi: 10.1007/BF01895688. |
[9] |
W. Chen and J. Li, On the low regularity of the modified Korteweg-de Vries equation with a dissipative term,, J. Diff. Equations, 240 (2007), 125.
doi: 10.1016/j.jde.2007.05.030. |
[10] |
M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations,, Amer. J. Math., 125 (2003), 1235.
doi: 10.1353/ajm.2003.0040. |
[11] |
L. Molinet, A note on the inviscid limit of the Benjamin-Ono-Burgers equation in the energy space,, , 141 (2013), 2793.
doi: 10.1090/S0002-9939-2013-11693-X. |
[12] |
L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers Equation,, Int. Math. Research Notices, (2002), 1979.
doi: 10.1155/S1073792802112104. |
[13] |
L. Molinet, F. Ribaud and A Youssfi, Ill-posedness issue for a class of parabolic equations,, Proceedings of the Royal Society of Edinburgh, 132 (2002), 1407.
|
[14] |
L. Molinet, J. -C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations,, SIAM. J. Math. Anal., 33 (2001), 982.
doi: 10.1137/S0036141001385307. |
[15] |
M. Panthee, On the ill-posedness result for the BBM equation,, Discrete Contin. Dyn. Syst., 30 (2011), 253.
doi: 10.3934/dcds.2011.30.253. |
[16] |
N. Tzvetkov, Remark on the local ill-posedness for KdV equation,, C. R. Acad. Sci. Paris Ser. I Math., 329 (1999), 1043.
doi: 10.1016/S0764-4442(00)88471-2. |
[1] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[2] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[3] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[4] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[5] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[6] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[7] |
Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161 |
[8] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[9] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[10] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[11] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[12] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[13] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[14] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[15] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[16] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[17] |
Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 |
[18] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020384 |
[19] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[20] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]