November  2014, 34(11): 4565-4576. doi: 10.3934/dcds.2014.34.4565

On ill-posedness for the generalized BBM equation

1. 

Instituto de Matemática - UFRJ Av. Horácio Macedo, Centro de Tecnologia, Cidade Universitária, Ilha do Fundão, 21941-972 Rio de Janeiro, RJ, Brazil

2. 

Departamento de Matemática, Universidade Estadual de Campinas (UNICAMP), Rua Sergio Buarque de Holanda, 651, 13083-859, Campinas, SP, Brazil

Received  October 2013 Revised  December 2013 Published  May 2014

We consider the Cauchy problem associated to the generalized Benjamin-Bona-Mahony (BBM) equation for given data in the $L^2$-based Sobolev spaces. Depending on the order of nonlinearity and dispersion, we prove that the Cauchy problem is ill-posed for data with lower order Sobolev regularity. We also prove that, in certain range of the Sobolev regularity, even if the solution exists globally in time, it fails to be smooth.
Citation: Xavier Carvajal, Mahendra Panthee. On ill-posedness for the generalized BBM equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4565-4576. doi: 10.3934/dcds.2014.34.4565
References:
[1]

A. A. Alazman, J. P. Albert, J. L. Bona, M. Chen and J. Wu, Comparisons between the BBM equation and a Boussinesq system,, Adv. Differential Equations, 11 (2006), 121. Google Scholar

[2]

J. Angulo Pava, C. Banquet and M. Scialom, Stability for the modified and fourth Benjamin-Bona-Mahony equations,, Discrete Contin. Dyn. Syst., 30 (2011), 851. doi: 10.3934/dcds.2011.30.851. Google Scholar

[3]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Phil. Trans. Royal Soc. London, 272 (1972), 47. doi: 10.1098/rsta.1972.0032. Google Scholar

[4]

J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves,, Philos. Trans. Royal Soc. London Series A, 302 (1981), 457. doi: 10.1098/rsta.1981.0178. Google Scholar

[5]

J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation,, Discrete and Continuous Dynamical Systems, 23 (2009), 1241. doi: 10.3934/dcds.2009.23.1241. Google Scholar

[6]

J. Bona and H. Chen, Well-posedness for regularized nonlinear dispersive wave equations,, Disc. Cont. Dynamical Systems, 23 (2009), 1253. doi: 10.3934/dcds.2009.23.1253. Google Scholar

[7]

J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data,, Selecta Math. New Ser., 3 (1997), 115. doi: 10.1007/s000290050008. Google Scholar

[8]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation,, Geom. Funct. Anal., 3 (1993), 209. doi: 10.1007/BF01895688. Google Scholar

[9]

W. Chen and J. Li, On the low regularity of the modified Korteweg-de Vries equation with a dissipative term,, J. Diff. Equations, 240 (2007), 125. doi: 10.1016/j.jde.2007.05.030. Google Scholar

[10]

M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations,, Amer. J. Math., 125 (2003), 1235. doi: 10.1353/ajm.2003.0040. Google Scholar

[11]

L. Molinet, A note on the inviscid limit of the Benjamin-Ono-Burgers equation in the energy space,, , 141 (2013), 2793. doi: 10.1090/S0002-9939-2013-11693-X. Google Scholar

[12]

L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers Equation,, Int. Math. Research Notices, (2002), 1979. doi: 10.1155/S1073792802112104. Google Scholar

[13]

L. Molinet, F. Ribaud and A Youssfi, Ill-posedness issue for a class of parabolic equations,, Proceedings of the Royal Society of Edinburgh, 132 (2002), 1407. Google Scholar

[14]

L. Molinet, J. -C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations,, SIAM. J. Math. Anal., 33 (2001), 982. doi: 10.1137/S0036141001385307. Google Scholar

[15]

M. Panthee, On the ill-posedness result for the BBM equation,, Discrete Contin. Dyn. Syst., 30 (2011), 253. doi: 10.3934/dcds.2011.30.253. Google Scholar

[16]

N. Tzvetkov, Remark on the local ill-posedness for KdV equation,, C. R. Acad. Sci. Paris Ser. I Math., 329 (1999), 1043. doi: 10.1016/S0764-4442(00)88471-2. Google Scholar

show all references

References:
[1]

A. A. Alazman, J. P. Albert, J. L. Bona, M. Chen and J. Wu, Comparisons between the BBM equation and a Boussinesq system,, Adv. Differential Equations, 11 (2006), 121. Google Scholar

[2]

J. Angulo Pava, C. Banquet and M. Scialom, Stability for the modified and fourth Benjamin-Bona-Mahony equations,, Discrete Contin. Dyn. Syst., 30 (2011), 851. doi: 10.3934/dcds.2011.30.851. Google Scholar

[3]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Phil. Trans. Royal Soc. London, 272 (1972), 47. doi: 10.1098/rsta.1972.0032. Google Scholar

[4]

J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves,, Philos. Trans. Royal Soc. London Series A, 302 (1981), 457. doi: 10.1098/rsta.1981.0178. Google Scholar

[5]

J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation,, Discrete and Continuous Dynamical Systems, 23 (2009), 1241. doi: 10.3934/dcds.2009.23.1241. Google Scholar

[6]

J. Bona and H. Chen, Well-posedness for regularized nonlinear dispersive wave equations,, Disc. Cont. Dynamical Systems, 23 (2009), 1253. doi: 10.3934/dcds.2009.23.1253. Google Scholar

[7]

J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data,, Selecta Math. New Ser., 3 (1997), 115. doi: 10.1007/s000290050008. Google Scholar

[8]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation,, Geom. Funct. Anal., 3 (1993), 209. doi: 10.1007/BF01895688. Google Scholar

[9]

W. Chen and J. Li, On the low regularity of the modified Korteweg-de Vries equation with a dissipative term,, J. Diff. Equations, 240 (2007), 125. doi: 10.1016/j.jde.2007.05.030. Google Scholar

[10]

M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations,, Amer. J. Math., 125 (2003), 1235. doi: 10.1353/ajm.2003.0040. Google Scholar

[11]

L. Molinet, A note on the inviscid limit of the Benjamin-Ono-Burgers equation in the energy space,, , 141 (2013), 2793. doi: 10.1090/S0002-9939-2013-11693-X. Google Scholar

[12]

L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers Equation,, Int. Math. Research Notices, (2002), 1979. doi: 10.1155/S1073792802112104. Google Scholar

[13]

L. Molinet, F. Ribaud and A Youssfi, Ill-posedness issue for a class of parabolic equations,, Proceedings of the Royal Society of Edinburgh, 132 (2002), 1407. Google Scholar

[14]

L. Molinet, J. -C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations,, SIAM. J. Math. Anal., 33 (2001), 982. doi: 10.1137/S0036141001385307. Google Scholar

[15]

M. Panthee, On the ill-posedness result for the BBM equation,, Discrete Contin. Dyn. Syst., 30 (2011), 253. doi: 10.3934/dcds.2011.30.253. Google Scholar

[16]

N. Tzvetkov, Remark on the local ill-posedness for KdV equation,, C. R. Acad. Sci. Paris Ser. I Math., 329 (1999), 1043. doi: 10.1016/S0764-4442(00)88471-2. Google Scholar

[1]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[2]

Jerry L. Bona, Hongqiu Chen, Chun-Hsiung Hsia. Well-posedness for the BBM-equation in a quarter plane. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1149-1163. doi: 10.3934/dcdss.2014.7.1149

[3]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[4]

Mahendra Panthee. On the ill-posedness result for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 253-259. doi: 10.3934/dcds.2011.30.253

[5]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[6]

Yannis Angelopoulos. Well-posedness and ill-posedness results for the Novikov-Veselov equation. Communications on Pure & Applied Analysis, 2016, 15 (3) : 727-760. doi: 10.3934/cpaa.2016.15.727

[7]

Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053

[8]

Hermen Jan Hupkes, Emmanuelle Augeraud-Véron. Well-posedness of initial value problems for functional differential and algebraic equations of mixed type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 737-765. doi: 10.3934/dcds.2011.30.737

[9]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

[10]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[11]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[12]

Yonggeun Cho, Gyeongha Hwang, Soonsik Kwon, Sanghyuk Lee. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2863-2880. doi: 10.3934/dcds.2015.35.2863

[13]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[14]

Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527

[15]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

[16]

Vishal Vasan, Bernard Deconinck. Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3171-3188. doi: 10.3934/dcds.2013.33.3171

[17]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[18]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[19]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[20]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]