November  2014, 34(11): 4565-4576. doi: 10.3934/dcds.2014.34.4565

On ill-posedness for the generalized BBM equation

1. 

Instituto de Matemática - UFRJ Av. Horácio Macedo, Centro de Tecnologia, Cidade Universitária, Ilha do Fundão, 21941-972 Rio de Janeiro, RJ, Brazil

2. 

Departamento de Matemática, Universidade Estadual de Campinas (UNICAMP), Rua Sergio Buarque de Holanda, 651, 13083-859, Campinas, SP, Brazil

Received  October 2013 Revised  December 2013 Published  May 2014

We consider the Cauchy problem associated to the generalized Benjamin-Bona-Mahony (BBM) equation for given data in the $L^2$-based Sobolev spaces. Depending on the order of nonlinearity and dispersion, we prove that the Cauchy problem is ill-posed for data with lower order Sobolev regularity. We also prove that, in certain range of the Sobolev regularity, even if the solution exists globally in time, it fails to be smooth.
Citation: Xavier Carvajal, Mahendra Panthee. On ill-posedness for the generalized BBM equation. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4565-4576. doi: 10.3934/dcds.2014.34.4565
References:
[1]

Adv. Differential Equations, 11 (2006), 121-166.  Google Scholar

[2]

Discrete Contin. Dyn. Syst., 30 (2011), 851-871. doi: 10.3934/dcds.2011.30.851.  Google Scholar

[3]

Phil. Trans. Royal Soc. London, 272 (1972), 47-78. doi: 10.1098/rsta.1972.0032.  Google Scholar

[4]

Philos. Trans. Royal Soc. London Series A, 302 (1981), 457-510. doi: 10.1098/rsta.1981.0178.  Google Scholar

[5]

Discrete and Continuous Dynamical Systems, 23 (2009), 1241-1252. doi: 10.3934/dcds.2009.23.1241.  Google Scholar

[6]

Disc. Cont. Dynamical Systems, 23 (2009), 1253-1275. doi: 10.3934/dcds.2009.23.1253.  Google Scholar

[7]

Selecta Math. New Ser., 3 (1997), 115-159. doi: 10.1007/s000290050008.  Google Scholar

[8]

Geom. Funct. Anal., 3 (1993), 209-262. doi: 10.1007/BF01895688.  Google Scholar

[9]

J. Diff. Equations, 240 (2007), 125-144. doi: 10.1016/j.jde.2007.05.030.  Google Scholar

[10]

Amer. J. Math., 125 (2003), 1235-1293. doi: 10.1353/ajm.2003.0040.  Google Scholar

[11]

arXiv:1110.2352v1, Proc. Amer. Math. Soc., 141 (2013), 2793-2798. doi: 10.1090/S0002-9939-2013-11693-X.  Google Scholar

[12]

Int. Math. Research Notices, (2002), 1979-2005. doi: 10.1155/S1073792802112104.  Google Scholar

[13]

Proceedings of the Royal Society of Edinburgh, 132 (2002), 1407-1416.  Google Scholar

[14]

SIAM. J. Math. Anal., 33 (2001), 982-988. doi: 10.1137/S0036141001385307.  Google Scholar

[15]

Discrete Contin. Dyn. Syst., 30 (2011), 253-259. doi: 10.3934/dcds.2011.30.253.  Google Scholar

[16]

C. R. Acad. Sci. Paris Ser. I Math., 329 (1999), 1043-1047. doi: 10.1016/S0764-4442(00)88471-2.  Google Scholar

show all references

References:
[1]

Adv. Differential Equations, 11 (2006), 121-166.  Google Scholar

[2]

Discrete Contin. Dyn. Syst., 30 (2011), 851-871. doi: 10.3934/dcds.2011.30.851.  Google Scholar

[3]

Phil. Trans. Royal Soc. London, 272 (1972), 47-78. doi: 10.1098/rsta.1972.0032.  Google Scholar

[4]

Philos. Trans. Royal Soc. London Series A, 302 (1981), 457-510. doi: 10.1098/rsta.1981.0178.  Google Scholar

[5]

Discrete and Continuous Dynamical Systems, 23 (2009), 1241-1252. doi: 10.3934/dcds.2009.23.1241.  Google Scholar

[6]

Disc. Cont. Dynamical Systems, 23 (2009), 1253-1275. doi: 10.3934/dcds.2009.23.1253.  Google Scholar

[7]

Selecta Math. New Ser., 3 (1997), 115-159. doi: 10.1007/s000290050008.  Google Scholar

[8]

Geom. Funct. Anal., 3 (1993), 209-262. doi: 10.1007/BF01895688.  Google Scholar

[9]

J. Diff. Equations, 240 (2007), 125-144. doi: 10.1016/j.jde.2007.05.030.  Google Scholar

[10]

Amer. J. Math., 125 (2003), 1235-1293. doi: 10.1353/ajm.2003.0040.  Google Scholar

[11]

arXiv:1110.2352v1, Proc. Amer. Math. Soc., 141 (2013), 2793-2798. doi: 10.1090/S0002-9939-2013-11693-X.  Google Scholar

[12]

Int. Math. Research Notices, (2002), 1979-2005. doi: 10.1155/S1073792802112104.  Google Scholar

[13]

Proceedings of the Royal Society of Edinburgh, 132 (2002), 1407-1416.  Google Scholar

[14]

SIAM. J. Math. Anal., 33 (2001), 982-988. doi: 10.1137/S0036141001385307.  Google Scholar

[15]

Discrete Contin. Dyn. Syst., 30 (2011), 253-259. doi: 10.3934/dcds.2011.30.253.  Google Scholar

[16]

C. R. Acad. Sci. Paris Ser. I Math., 329 (1999), 1043-1047. doi: 10.1016/S0764-4442(00)88471-2.  Google Scholar

[1]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[2]

Jerry L. Bona, Hongqiu Chen, Chun-Hsiung Hsia. Well-posedness for the BBM-equation in a quarter plane. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1149-1163. doi: 10.3934/dcdss.2014.7.1149

[3]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[4]

Mahendra Panthee. On the ill-posedness result for the BBM equation. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 253-259. doi: 10.3934/dcds.2011.30.253

[5]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[6]

Yannis Angelopoulos. Well-posedness and ill-posedness results for the Novikov-Veselov equation. Communications on Pure & Applied Analysis, 2016, 15 (3) : 727-760. doi: 10.3934/cpaa.2016.15.727

[7]

Keyan Wang, Yao Xiao. Local well-posedness for Navier-Stokes equations with a class of ill-prepared initial data. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2987-3011. doi: 10.3934/dcds.2020158

[8]

Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic & Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029

[9]

Justin Forlano. Almost sure global well posedness for the BBM equation with infinite $ L^{2} $ initial data. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 267-318. doi: 10.3934/dcds.2020011

[10]

Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053

[11]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

[12]

Hermen Jan Hupkes, Emmanuelle Augeraud-Véron. Well-posedness of initial value problems for functional differential and algebraic equations of mixed type. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 737-765. doi: 10.3934/dcds.2011.30.737

[13]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[14]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[15]

Mircea Sofonea, Yi-bin Xiao. Tykhonov well-posedness of a viscoplastic contact problem. Evolution Equations & Control Theory, 2020, 9 (4) : 1167-1185. doi: 10.3934/eect.2020048

[16]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[17]

Yonggeun Cho, Gyeongha Hwang, Soonsik Kwon, Sanghyuk Lee. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 2863-2880. doi: 10.3934/dcds.2015.35.2863

[18]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[19]

Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036

[20]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]