November  2014, 34(11): 4565-4576. doi: 10.3934/dcds.2014.34.4565

On ill-posedness for the generalized BBM equation

1. 

Instituto de Matemática - UFRJ Av. Horácio Macedo, Centro de Tecnologia, Cidade Universitária, Ilha do Fundão, 21941-972 Rio de Janeiro, RJ, Brazil

2. 

Departamento de Matemática, Universidade Estadual de Campinas (UNICAMP), Rua Sergio Buarque de Holanda, 651, 13083-859, Campinas, SP, Brazil

Received  October 2013 Revised  December 2013 Published  May 2014

We consider the Cauchy problem associated to the generalized Benjamin-Bona-Mahony (BBM) equation for given data in the $L^2$-based Sobolev spaces. Depending on the order of nonlinearity and dispersion, we prove that the Cauchy problem is ill-posed for data with lower order Sobolev regularity. We also prove that, in certain range of the Sobolev regularity, even if the solution exists globally in time, it fails to be smooth.
Citation: Xavier Carvajal, Mahendra Panthee. On ill-posedness for the generalized BBM equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4565-4576. doi: 10.3934/dcds.2014.34.4565
References:
[1]

A. A. Alazman, J. P. Albert, J. L. Bona, M. Chen and J. Wu, Comparisons between the BBM equation and a Boussinesq system,, Adv. Differential Equations, 11 (2006), 121.   Google Scholar

[2]

J. Angulo Pava, C. Banquet and M. Scialom, Stability for the modified and fourth Benjamin-Bona-Mahony equations,, Discrete Contin. Dyn. Syst., 30 (2011), 851.  doi: 10.3934/dcds.2011.30.851.  Google Scholar

[3]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Phil. Trans. Royal Soc. London, 272 (1972), 47.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[4]

J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves,, Philos. Trans. Royal Soc. London Series A, 302 (1981), 457.  doi: 10.1098/rsta.1981.0178.  Google Scholar

[5]

J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation,, Discrete and Continuous Dynamical Systems, 23 (2009), 1241.  doi: 10.3934/dcds.2009.23.1241.  Google Scholar

[6]

J. Bona and H. Chen, Well-posedness for regularized nonlinear dispersive wave equations,, Disc. Cont. Dynamical Systems, 23 (2009), 1253.  doi: 10.3934/dcds.2009.23.1253.  Google Scholar

[7]

J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data,, Selecta Math. New Ser., 3 (1997), 115.  doi: 10.1007/s000290050008.  Google Scholar

[8]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation,, Geom. Funct. Anal., 3 (1993), 209.  doi: 10.1007/BF01895688.  Google Scholar

[9]

W. Chen and J. Li, On the low regularity of the modified Korteweg-de Vries equation with a dissipative term,, J. Diff. Equations, 240 (2007), 125.  doi: 10.1016/j.jde.2007.05.030.  Google Scholar

[10]

M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations,, Amer. J. Math., 125 (2003), 1235.  doi: 10.1353/ajm.2003.0040.  Google Scholar

[11]

L. Molinet, A note on the inviscid limit of the Benjamin-Ono-Burgers equation in the energy space,, , 141 (2013), 2793.  doi: 10.1090/S0002-9939-2013-11693-X.  Google Scholar

[12]

L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers Equation,, Int. Math. Research Notices, (2002), 1979.  doi: 10.1155/S1073792802112104.  Google Scholar

[13]

L. Molinet, F. Ribaud and A Youssfi, Ill-posedness issue for a class of parabolic equations,, Proceedings of the Royal Society of Edinburgh, 132 (2002), 1407.   Google Scholar

[14]

L. Molinet, J. -C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations,, SIAM. J. Math. Anal., 33 (2001), 982.  doi: 10.1137/S0036141001385307.  Google Scholar

[15]

M. Panthee, On the ill-posedness result for the BBM equation,, Discrete Contin. Dyn. Syst., 30 (2011), 253.  doi: 10.3934/dcds.2011.30.253.  Google Scholar

[16]

N. Tzvetkov, Remark on the local ill-posedness for KdV equation,, C. R. Acad. Sci. Paris Ser. I Math., 329 (1999), 1043.  doi: 10.1016/S0764-4442(00)88471-2.  Google Scholar

show all references

References:
[1]

A. A. Alazman, J. P. Albert, J. L. Bona, M. Chen and J. Wu, Comparisons between the BBM equation and a Boussinesq system,, Adv. Differential Equations, 11 (2006), 121.   Google Scholar

[2]

J. Angulo Pava, C. Banquet and M. Scialom, Stability for the modified and fourth Benjamin-Bona-Mahony equations,, Discrete Contin. Dyn. Syst., 30 (2011), 851.  doi: 10.3934/dcds.2011.30.851.  Google Scholar

[3]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Phil. Trans. Royal Soc. London, 272 (1972), 47.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[4]

J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves,, Philos. Trans. Royal Soc. London Series A, 302 (1981), 457.  doi: 10.1098/rsta.1981.0178.  Google Scholar

[5]

J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation,, Discrete and Continuous Dynamical Systems, 23 (2009), 1241.  doi: 10.3934/dcds.2009.23.1241.  Google Scholar

[6]

J. Bona and H. Chen, Well-posedness for regularized nonlinear dispersive wave equations,, Disc. Cont. Dynamical Systems, 23 (2009), 1253.  doi: 10.3934/dcds.2009.23.1253.  Google Scholar

[7]

J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data,, Selecta Math. New Ser., 3 (1997), 115.  doi: 10.1007/s000290050008.  Google Scholar

[8]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation,, Geom. Funct. Anal., 3 (1993), 209.  doi: 10.1007/BF01895688.  Google Scholar

[9]

W. Chen and J. Li, On the low regularity of the modified Korteweg-de Vries equation with a dissipative term,, J. Diff. Equations, 240 (2007), 125.  doi: 10.1016/j.jde.2007.05.030.  Google Scholar

[10]

M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations,, Amer. J. Math., 125 (2003), 1235.  doi: 10.1353/ajm.2003.0040.  Google Scholar

[11]

L. Molinet, A note on the inviscid limit of the Benjamin-Ono-Burgers equation in the energy space,, , 141 (2013), 2793.  doi: 10.1090/S0002-9939-2013-11693-X.  Google Scholar

[12]

L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers Equation,, Int. Math. Research Notices, (2002), 1979.  doi: 10.1155/S1073792802112104.  Google Scholar

[13]

L. Molinet, F. Ribaud and A Youssfi, Ill-posedness issue for a class of parabolic equations,, Proceedings of the Royal Society of Edinburgh, 132 (2002), 1407.   Google Scholar

[14]

L. Molinet, J. -C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations,, SIAM. J. Math. Anal., 33 (2001), 982.  doi: 10.1137/S0036141001385307.  Google Scholar

[15]

M. Panthee, On the ill-posedness result for the BBM equation,, Discrete Contin. Dyn. Syst., 30 (2011), 253.  doi: 10.3934/dcds.2011.30.253.  Google Scholar

[16]

N. Tzvetkov, Remark on the local ill-posedness for KdV equation,, C. R. Acad. Sci. Paris Ser. I Math., 329 (1999), 1043.  doi: 10.1016/S0764-4442(00)88471-2.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[4]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[5]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[6]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[7]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[8]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[9]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[10]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[11]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[14]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[15]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[16]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[17]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[18]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[19]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[20]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]