\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Delay-dependent stability criteria for neutral delay differential and difference equations

Abstract / Introduction Related Papers Cited by
  • This paper discusses asymptotic stability properties of the neutral delay differential equation \begin{eqnarray*} y'(t) = a y (t) + b y ( t - \tau ) + c y'( t - \tau ),       t > 0, \\ \end{eqnarray*} where $a,\,b,\,c$ and $\tau >0$ are real scalars. We consider the exact as well as discretized delay-dependent asymptotic stability regions for this equation and describe them in terms of explicit necessary and sufficient conditions imposed on $a,\,b,\,c$ and $\tau$. Such descriptions enable us to observe some fundamental properties of these stability regions, especially with respect to stability of corresponding numerical formulae. As a consequence of our investigations, we extend existing results on this topic.
    Mathematics Subject Classification: Primary: 34K20, 39A30; Secondary: 34K28, 39A12, 65L20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Bellen, N. Guglielmi and L. Torelli, Asymptotic stability properties of $\Theta$-methods for the pantograph equation, Appl. Numer. Math., 24 (1997), 279-293.doi: 10.1016/S0168-9274(97)00026-3.

    [2]

    A. Bellen, Z. Jackiewicz and M. Zennaro, Stability analysis of one-step methods for neutral delay-differential equations, Numer. Math., 52 (1988), 605-619.doi: 10.1007/BF01395814.

    [3]

    A. Bellen and M. Zennaro, Numerical Methods For Delay Differential Equations, Oxford University Press, Oxford, 2003.doi: 10.1093/acprof:oso/9780198506546.001.0001.

    [4]

    W. E. Brumley, On the asymptotic behavior of solutions of differential-difference equations of neutral type, J. Differential Equations, 7 (1970), 175-188.doi: 10.1016/0022-0396(70)90131-2.

    [5]

    M. Calvo and T. Grande, On the asymptotic stability of $\Theta$-methods for delay differential equations, Numer. Math., 54 (1988), 257-269.doi: 10.1007/BF01396761.

    [6]

    J. Čermák, The stability and asymptotic properties of the $\Theta$-methods for the pantograph equation, IMA J. Numer. Anal., 31 (2011), 1533-1551.doi: 10.1093/imanum/drq021.

    [7]

    J. Čermák and J. Hrabalová, On stability regions for some delay differential equations and their discretizations, Period. Math. Hung., to appear.

    [8]

    J. Čermák, J. Jánský and P. Kundrát, On necessary and sufficient conditions for the asymptotic stability of higher order linear difference equations, J. Difference Equ. Appl., 18 (2012), 1781-1800.doi: 10.1080/10236198.2011.595406.

    [9]

    S. Elaydi, An Introduction to Difference Equations, Springer, New York, 2005.

    [10]

    H. I. Freedman and Y. Kuang, Stability switches in linear scalar neutral delay equations, Funkcial. Ekvac., 34 (1991), 187-209.

    [11]

    P. S. Gromova, Stability of solutions of nonlinear equations of the neutral type in the asymptotically critical case, Math. Notes, 1 (1967), 715-726.

    [12]

    N. Guglielmi, Delay dependent stability regions of $\Theta$-methods for delay differential equations, IMA J. Numer. Anal., 18 (1998), 399-418.doi: 10.1093/imanum/18.3.399.

    [13]

    N. Guglielmi, Asymptotic stability barriers for natural Runge-Kutta processes for delay equations, SIAM J. Numer. Anal., 39 (2001), 763-783.doi: 10.1137/S0036142900375396.

    [14]

    N. Guglielmi, On the qualitative behaviour of numerical methods for delay differential equations of neutral type. A case study: $\Theta$-methods, Recent Trends in Numerical Analysis (L. Brugnano and D. Trigiante, eds.), 3 (2001), 175-184.

    [15]

    N. D. Hayes, Roots of the transcendental equations associated with certain difference-differential equations, J. London Math. Soc., 25 (1950), 226-232.

    [16]

    C. Huang, Delay-dependent stability of high order Runge-Kutta methods, Numer. Math., 111 (2009), 377-387.doi: 10.1007/s00211-008-0197-z.

    [17]

    A. Iserles, Exact and discretized stability of the pantograph equation, Appl. Numer. Math., 24 (1997), 295-308.doi: 10.1016/S0168-9274(97)00027-5.

    [18]

    Z. Jackiewicz, Asymptotic stability analysis of $\Theta$-methods for functional differential equations, Numer. Math., 43 (1984), 389-396.doi: 10.1007/BF01390181.

    [19]

    S. Junca and B. Lombard, Stability of a critical nonlinear neutral delay differential equation, J. Differential Equations, 256 (2014), 2368-2391.doi: 10.1016/j.jde.2014.01.004.

    [20]

    V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999.doi: 10.1007/978-94-017-1965-0.

    [21]

    J. Kuang and Y. Cong, Stability of Numerical Methods for Delay Differential Equations, Science Press, Beijing, 2005.

    [22]

    Y. Liu, On the $\Theta$-method for delay differential equations with infinite lag, J. Comput. Appl. Math., 71 (1996), 177-190.doi: 10.1016/0377-0427(95)00222-7.

    [23]

    H. Matsunaga, Stability switches in a system of linear differential equations with diagonal delay, Appl. Math. Comput., 212 (2009), 145-152.doi: 10.1016/j.amc.2009.02.010.

    [24]

    H. Matsunaga and H. Hashimoto, Asymptotic stability and stability switches in a linear integro-differential system, Differ. Equ. Appl., 3 (2011), 43-55.doi: 10.7153/dea-03-04.

    [25]

    W. Snow, Existence, Uniqueness and Stability for Nonlinear Differential-Difference Equations in the Neutral Case, Thesis (Ph.D.)–New York University. 1964. 79 pp.

    [26]

    V. V. Vlasov and D. A. Medvedev, Functional-differential equations and related problems in spectral theory, J. Math. Sci. (N. Y.), 164 (2010), 659-841.doi: 10.1007/s10958-010-9768-5.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return