• Previous Article
    Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations
  • DCDS Home
  • This Issue
  • Next Article
    On ill-posedness for the generalized BBM equation
November  2014, 34(11): 4577-4588. doi: 10.3934/dcds.2014.34.4577

Delay-dependent stability criteria for neutral delay differential and difference equations

1. 

Institute of Mathematics, Brno University of Technology, Technická 2, CZ-61669 Brno, Czech Republic, Czech Republic

Received  October 2013 Revised  January 2014 Published  May 2014

This paper discusses asymptotic stability properties of the neutral delay differential equation \begin{eqnarray*} y'(t) = a y (t) + b y ( t - \tau ) + c y'( t - \tau ),       t > 0, \\ \end{eqnarray*} where $a,\,b,\,c$ and $\tau >0$ are real scalars. We consider the exact as well as discretized delay-dependent asymptotic stability regions for this equation and describe them in terms of explicit necessary and sufficient conditions imposed on $a,\,b,\,c$ and $\tau$. Such descriptions enable us to observe some fundamental properties of these stability regions, especially with respect to stability of corresponding numerical formulae. As a consequence of our investigations, we extend existing results on this topic.
Citation: Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577
References:
[1]

A. Bellen, N. Guglielmi and L. Torelli, Asymptotic stability properties of $\Theta$-methods for the pantograph equation,, Appl. Numer. Math., 24 (1997), 279.  doi: 10.1016/S0168-9274(97)00026-3.  Google Scholar

[2]

A. Bellen, Z. Jackiewicz and M. Zennaro, Stability analysis of one-step methods for neutral delay-differential equations,, Numer. Math., 52 (1988), 605.  doi: 10.1007/BF01395814.  Google Scholar

[3]

A. Bellen and M. Zennaro, Numerical Methods For Delay Differential Equations,, Oxford University Press, (2003).  doi: 10.1093/acprof:oso/9780198506546.001.0001.  Google Scholar

[4]

W. E. Brumley, On the asymptotic behavior of solutions of differential-difference equations of neutral type,, J. Differential Equations, 7 (1970), 175.  doi: 10.1016/0022-0396(70)90131-2.  Google Scholar

[5]

M. Calvo and T. Grande, On the asymptotic stability of $\Theta$-methods for delay differential equations,, Numer. Math., 54 (1988), 257.  doi: 10.1007/BF01396761.  Google Scholar

[6]

J. Čermák, The stability and asymptotic properties of the $\Theta$-methods for the pantograph equation,, IMA J. Numer. Anal., 31 (2011), 1533.  doi: 10.1093/imanum/drq021.  Google Scholar

[7]

J. Čermák and J. Hrabalová, On stability regions for some delay differential equations and their discretizations,, Period. Math. Hung., ().   Google Scholar

[8]

J. Čermák, J. Jánský and P. Kundrát, On necessary and sufficient conditions for the asymptotic stability of higher order linear difference equations,, J. Difference Equ. Appl., 18 (2012), 1781.  doi: 10.1080/10236198.2011.595406.  Google Scholar

[9]

S. Elaydi, An Introduction to Difference Equations,, Springer, (2005).   Google Scholar

[10]

H. I. Freedman and Y. Kuang, Stability switches in linear scalar neutral delay equations,, Funkcial. Ekvac., 34 (1991), 187.   Google Scholar

[11]

P. S. Gromova, Stability of solutions of nonlinear equations of the neutral type in the asymptotically critical case,, Math. Notes, 1 (1967), 715.   Google Scholar

[12]

N. Guglielmi, Delay dependent stability regions of $\Theta$-methods for delay differential equations,, IMA J. Numer. Anal., 18 (1998), 399.  doi: 10.1093/imanum/18.3.399.  Google Scholar

[13]

N. Guglielmi, Asymptotic stability barriers for natural Runge-Kutta processes for delay equations,, SIAM J. Numer. Anal., 39 (2001), 763.  doi: 10.1137/S0036142900375396.  Google Scholar

[14]

N. Guglielmi, On the qualitative behaviour of numerical methods for delay differential equations of neutral type. A case study: $\Theta$-methods,, Recent Trends in Numerical Analysis (L. Brugnano and D. Trigiante, 3 (2001), 175.   Google Scholar

[15]

N. D. Hayes, Roots of the transcendental equations associated with certain difference-differential equations,, J. London Math. Soc., 25 (1950), 226.   Google Scholar

[16]

C. Huang, Delay-dependent stability of high order Runge-Kutta methods,, Numer. Math., 111 (2009), 377.  doi: 10.1007/s00211-008-0197-z.  Google Scholar

[17]

A. Iserles, Exact and discretized stability of the pantograph equation,, Appl. Numer. Math., 24 (1997), 295.  doi: 10.1016/S0168-9274(97)00027-5.  Google Scholar

[18]

Z. Jackiewicz, Asymptotic stability analysis of $\Theta$-methods for functional differential equations,, Numer. Math., 43 (1984), 389.  doi: 10.1007/BF01390181.  Google Scholar

[19]

S. Junca and B. Lombard, Stability of a critical nonlinear neutral delay differential equation,, J. Differential Equations, 256 (2014), 2368.  doi: 10.1016/j.jde.2014.01.004.  Google Scholar

[20]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations,, Kluwer Academic Publishers, (1999).  doi: 10.1007/978-94-017-1965-0.  Google Scholar

[21]

J. Kuang and Y. Cong, Stability of Numerical Methods for Delay Differential Equations,, Science Press, (2005).   Google Scholar

[22]

Y. Liu, On the $\Theta$-method for delay differential equations with infinite lag,, J. Comput. Appl. Math., 71 (1996), 177.  doi: 10.1016/0377-0427(95)00222-7.  Google Scholar

[23]

H. Matsunaga, Stability switches in a system of linear differential equations with diagonal delay,, Appl. Math. Comput., 212 (2009), 145.  doi: 10.1016/j.amc.2009.02.010.  Google Scholar

[24]

H. Matsunaga and H. Hashimoto, Asymptotic stability and stability switches in a linear integro-differential system,, Differ. Equ. Appl., 3 (2011), 43.  doi: 10.7153/dea-03-04.  Google Scholar

[25]

W. Snow, Existence, Uniqueness and Stability for Nonlinear Differential-Difference Equations in the Neutral Case,, Thesis (Ph.D.)–New York University. 1964. 79 pp., (1964).   Google Scholar

[26]

V. V. Vlasov and D. A. Medvedev, Functional-differential equations and related problems in spectral theory,, J. Math. Sci. (N. Y.), 164 (2010), 659.  doi: 10.1007/s10958-010-9768-5.  Google Scholar

show all references

References:
[1]

A. Bellen, N. Guglielmi and L. Torelli, Asymptotic stability properties of $\Theta$-methods for the pantograph equation,, Appl. Numer. Math., 24 (1997), 279.  doi: 10.1016/S0168-9274(97)00026-3.  Google Scholar

[2]

A. Bellen, Z. Jackiewicz and M. Zennaro, Stability analysis of one-step methods for neutral delay-differential equations,, Numer. Math., 52 (1988), 605.  doi: 10.1007/BF01395814.  Google Scholar

[3]

A. Bellen and M. Zennaro, Numerical Methods For Delay Differential Equations,, Oxford University Press, (2003).  doi: 10.1093/acprof:oso/9780198506546.001.0001.  Google Scholar

[4]

W. E. Brumley, On the asymptotic behavior of solutions of differential-difference equations of neutral type,, J. Differential Equations, 7 (1970), 175.  doi: 10.1016/0022-0396(70)90131-2.  Google Scholar

[5]

M. Calvo and T. Grande, On the asymptotic stability of $\Theta$-methods for delay differential equations,, Numer. Math., 54 (1988), 257.  doi: 10.1007/BF01396761.  Google Scholar

[6]

J. Čermák, The stability and asymptotic properties of the $\Theta$-methods for the pantograph equation,, IMA J. Numer. Anal., 31 (2011), 1533.  doi: 10.1093/imanum/drq021.  Google Scholar

[7]

J. Čermák and J. Hrabalová, On stability regions for some delay differential equations and their discretizations,, Period. Math. Hung., ().   Google Scholar

[8]

J. Čermák, J. Jánský and P. Kundrát, On necessary and sufficient conditions for the asymptotic stability of higher order linear difference equations,, J. Difference Equ. Appl., 18 (2012), 1781.  doi: 10.1080/10236198.2011.595406.  Google Scholar

[9]

S. Elaydi, An Introduction to Difference Equations,, Springer, (2005).   Google Scholar

[10]

H. I. Freedman and Y. Kuang, Stability switches in linear scalar neutral delay equations,, Funkcial. Ekvac., 34 (1991), 187.   Google Scholar

[11]

P. S. Gromova, Stability of solutions of nonlinear equations of the neutral type in the asymptotically critical case,, Math. Notes, 1 (1967), 715.   Google Scholar

[12]

N. Guglielmi, Delay dependent stability regions of $\Theta$-methods for delay differential equations,, IMA J. Numer. Anal., 18 (1998), 399.  doi: 10.1093/imanum/18.3.399.  Google Scholar

[13]

N. Guglielmi, Asymptotic stability barriers for natural Runge-Kutta processes for delay equations,, SIAM J. Numer. Anal., 39 (2001), 763.  doi: 10.1137/S0036142900375396.  Google Scholar

[14]

N. Guglielmi, On the qualitative behaviour of numerical methods for delay differential equations of neutral type. A case study: $\Theta$-methods,, Recent Trends in Numerical Analysis (L. Brugnano and D. Trigiante, 3 (2001), 175.   Google Scholar

[15]

N. D. Hayes, Roots of the transcendental equations associated with certain difference-differential equations,, J. London Math. Soc., 25 (1950), 226.   Google Scholar

[16]

C. Huang, Delay-dependent stability of high order Runge-Kutta methods,, Numer. Math., 111 (2009), 377.  doi: 10.1007/s00211-008-0197-z.  Google Scholar

[17]

A. Iserles, Exact and discretized stability of the pantograph equation,, Appl. Numer. Math., 24 (1997), 295.  doi: 10.1016/S0168-9274(97)00027-5.  Google Scholar

[18]

Z. Jackiewicz, Asymptotic stability analysis of $\Theta$-methods for functional differential equations,, Numer. Math., 43 (1984), 389.  doi: 10.1007/BF01390181.  Google Scholar

[19]

S. Junca and B. Lombard, Stability of a critical nonlinear neutral delay differential equation,, J. Differential Equations, 256 (2014), 2368.  doi: 10.1016/j.jde.2014.01.004.  Google Scholar

[20]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations,, Kluwer Academic Publishers, (1999).  doi: 10.1007/978-94-017-1965-0.  Google Scholar

[21]

J. Kuang and Y. Cong, Stability of Numerical Methods for Delay Differential Equations,, Science Press, (2005).   Google Scholar

[22]

Y. Liu, On the $\Theta$-method for delay differential equations with infinite lag,, J. Comput. Appl. Math., 71 (1996), 177.  doi: 10.1016/0377-0427(95)00222-7.  Google Scholar

[23]

H. Matsunaga, Stability switches in a system of linear differential equations with diagonal delay,, Appl. Math. Comput., 212 (2009), 145.  doi: 10.1016/j.amc.2009.02.010.  Google Scholar

[24]

H. Matsunaga and H. Hashimoto, Asymptotic stability and stability switches in a linear integro-differential system,, Differ. Equ. Appl., 3 (2011), 43.  doi: 10.7153/dea-03-04.  Google Scholar

[25]

W. Snow, Existence, Uniqueness and Stability for Nonlinear Differential-Difference Equations in the Neutral Case,, Thesis (Ph.D.)–New York University. 1964. 79 pp., (1964).   Google Scholar

[26]

V. V. Vlasov and D. A. Medvedev, Functional-differential equations and related problems in spectral theory,, J. Math. Sci. (N. Y.), 164 (2010), 659.  doi: 10.1007/s10958-010-9768-5.  Google Scholar

[1]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[2]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[3]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[4]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[7]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[8]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[9]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[10]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[11]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[16]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[20]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]