November  2014, 34(11): 4589-4615. doi: 10.3934/dcds.2014.34.4589

Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations

1. 

Laboratoire de Mathématiques et d'Informatique (LMI), INSA de Rouen, Avenue de l'Université, 76 801 Saint Etienne du Rouvray Cedex, France

2. 

Kepler Institute of Astronomy, University of Zielona Góra, Licealna 9, PL-65-417, Zielona Góra, Poland

Received  January 2013 Revised  March 2014 Published  May 2014

The present work is the first one of two papers, in which we analyse systems of higher order variational equations associated to natural Hamiltonian systems with homogeneous potential of degree $k\in\mathbb{Z}\setminus \{-1,0,1\}$. Our attempt is to give necessary conditions for complete integrability which can be deduced in a framework of differential Galois theory. We show that the higher variational equations $\mathrm{VE}_p$ of order $p\geq 2$, although complicated, have a very particular algebraic structure. More precisely, we show that if $\mathrm{VE}_1$ has virtually Abelian differential Galois group (DGG), then $\mathrm{VE}_{p}$ are solvable for an arbitrary $p>1$. We proved this inductively using what we call the second level integrals. Then we formulate the necessary and sufficient conditions in terms of these second level integrals for $\mathrm{VE}_{p}$ to be virtually Abelian. We apply the above conditions to potentials of degree $k=\pm 2$ considering their $\mathrm{VE}_p$ with $p>1$ along Darboux points. For $k= 2$, $\mathrm{VE}_1$ does not give any obstruction to the integrability. We show that under certain non-resonance condition, the only degree two integrable potential is the multidimensional harmonic oscillator. In contrast, for degree $k=-2$ potentials, all the $\mathrm{VE}_{p}$ along Darboux points are virtually Abelian.
Citation: Guillaume Duval, Andrzej J. Maciejewski. Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4589-4615. doi: 10.3934/dcds.2014.34.4589
References:
[1]

M. Audin, Les Systèmes Hamiltoniens et Leur Intégrabilité,, Cours Spécialisés 8, (2001).   Google Scholar

[2]

A. Baider, R. C. Churchill, D. L. Rod and M. F. Singer, On the infinitesimal geometry of integrable systems,, in Mechanics Day (Waterloo, (1992), 5.   Google Scholar

[3]

G. Casale, Morales-Ramis theorems via Malgrange pseudogroup,, Annales de l'Institut Fourier, 59 (2009), 2593.  doi: 10.5802/aif.2501.  Google Scholar

[4]

G. Duval and A. J. Maciejewski, Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials,, Annales de l'Institut Fourier, 59 (2009), 2839.  doi: 10.5802/aif.2510.  Google Scholar

[5]

N. V. Grigorenko, Abelian extensions in Picard-Vessiot theory,, Mat. Zametki, 17 (1975), 113.   Google Scholar

[6]

J. E. Humphreys, Linear Algebraic Groups,, Graduate Texts in Mathematics, (1975).   Google Scholar

[7]

E. R. Kolchin, Algebraic groups and algebraic dependence,, Amer. J. Math., 90 (1968), 1151.  doi: 10.2307/2373294.  Google Scholar

[8]

A. J. Maciejewski and M. Przybylska, Differential Galois theory and integrability,, Internat. J. Geom. Methods in Modern Phys., 6 (2009), 1357.  doi: 10.1142/S0219887809004272.  Google Scholar

[9]

J. J. Morales-Ruiz and J.-P. Ramis, Integrability of dynamical systems through differential Galois theory: A practical guide,, in Differential algebra, 509 (2010), 143.  doi: 10.1090/conm/509/09980.  Google Scholar

[10]

J. J. Morales-Ruiz, J. P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations,, Ann. Sci. Éc. Norm. Supér, 40 (2007), 845.  doi: 10.1016/j.ansens.2007.09.002.  Google Scholar

[11]

M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations, vol. 328 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (2003).   Google Scholar

show all references

References:
[1]

M. Audin, Les Systèmes Hamiltoniens et Leur Intégrabilité,, Cours Spécialisés 8, (2001).   Google Scholar

[2]

A. Baider, R. C. Churchill, D. L. Rod and M. F. Singer, On the infinitesimal geometry of integrable systems,, in Mechanics Day (Waterloo, (1992), 5.   Google Scholar

[3]

G. Casale, Morales-Ramis theorems via Malgrange pseudogroup,, Annales de l'Institut Fourier, 59 (2009), 2593.  doi: 10.5802/aif.2501.  Google Scholar

[4]

G. Duval and A. J. Maciejewski, Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials,, Annales de l'Institut Fourier, 59 (2009), 2839.  doi: 10.5802/aif.2510.  Google Scholar

[5]

N. V. Grigorenko, Abelian extensions in Picard-Vessiot theory,, Mat. Zametki, 17 (1975), 113.   Google Scholar

[6]

J. E. Humphreys, Linear Algebraic Groups,, Graduate Texts in Mathematics, (1975).   Google Scholar

[7]

E. R. Kolchin, Algebraic groups and algebraic dependence,, Amer. J. Math., 90 (1968), 1151.  doi: 10.2307/2373294.  Google Scholar

[8]

A. J. Maciejewski and M. Przybylska, Differential Galois theory and integrability,, Internat. J. Geom. Methods in Modern Phys., 6 (2009), 1357.  doi: 10.1142/S0219887809004272.  Google Scholar

[9]

J. J. Morales-Ruiz and J.-P. Ramis, Integrability of dynamical systems through differential Galois theory: A practical guide,, in Differential algebra, 509 (2010), 143.  doi: 10.1090/conm/509/09980.  Google Scholar

[10]

J. J. Morales-Ruiz, J. P. Ramis and C. Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations,, Ann. Sci. Éc. Norm. Supér, 40 (2007), 845.  doi: 10.1016/j.ansens.2007.09.002.  Google Scholar

[11]

M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations, vol. 328 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (2003).   Google Scholar

[1]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[4]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[5]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[8]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[9]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[10]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[11]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[12]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[13]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[14]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[15]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[16]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[17]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[18]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[19]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[20]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]