November  2014, 34(11): 4589-4615. doi: 10.3934/dcds.2014.34.4589

Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations

1. 

Laboratoire de Mathématiques et d'Informatique (LMI), INSA de Rouen, Avenue de l'Université, 76 801 Saint Etienne du Rouvray Cedex, France

2. 

Kepler Institute of Astronomy, University of Zielona Góra, Licealna 9, PL-65-417, Zielona Góra, Poland

Received  January 2013 Revised  March 2014 Published  May 2014

The present work is the first one of two papers, in which we analyse systems of higher order variational equations associated to natural Hamiltonian systems with homogeneous potential of degree $k\in\mathbb{Z}\setminus \{-1,0,1\}$. Our attempt is to give necessary conditions for complete integrability which can be deduced in a framework of differential Galois theory. We show that the higher variational equations $\mathrm{VE}_p$ of order $p\geq 2$, although complicated, have a very particular algebraic structure. More precisely, we show that if $\mathrm{VE}_1$ has virtually Abelian differential Galois group (DGG), then $\mathrm{VE}_{p}$ are solvable for an arbitrary $p>1$. We proved this inductively using what we call the second level integrals. Then we formulate the necessary and sufficient conditions in terms of these second level integrals for $\mathrm{VE}_{p}$ to be virtually Abelian. We apply the above conditions to potentials of degree $k=\pm 2$ considering their $\mathrm{VE}_p$ with $p>1$ along Darboux points. For $k= 2$, $\mathrm{VE}_1$ does not give any obstruction to the integrability. We show that under certain non-resonance condition, the only degree two integrable potential is the multidimensional harmonic oscillator. In contrast, for degree $k=-2$ potentials, all the $\mathrm{VE}_{p}$ along Darboux points are virtually Abelian.
Citation: Guillaume Duval, Andrzej J. Maciejewski. Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4589-4615. doi: 10.3934/dcds.2014.34.4589
References:
[1]

Cours Spécialisés 8, Collection SMF, SMF et EDP Sciences, Paris, 2001.  Google Scholar

[2]

in Mechanics Day (Waterloo, ON, 1992), vol. 7 of Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 1996, 5-56.  Google Scholar

[3]

Annales de l'Institut Fourier, 59 (2009), 2593-2610. doi: 10.5802/aif.2501.  Google Scholar

[4]

Annales de l'Institut Fourier, 59 (2009), 2839-2890. doi: 10.5802/aif.2510.  Google Scholar

[5]

Mat. Zametki, 17 (1975), 113-117.  Google Scholar

[6]

Graduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1975.  Google Scholar

[7]

Amer. J. Math., 90 (1968), 1151-1164. doi: 10.2307/2373294.  Google Scholar

[8]

Internat. J. Geom. Methods in Modern Phys., 6 (2009), 1357-1390. doi: 10.1142/S0219887809004272.  Google Scholar

[9]

in Differential algebra, complex analysis and orthogonal polynomials, Contemp. Math., Amer. Math. Soc., Providence, RI, 509 (2010), 143-220. doi: 10.1090/conm/509/09980.  Google Scholar

[10]

Ann. Sci. Éc. Norm. Supér, 40 (2007), 845-884. doi: 10.1016/j.ansens.2007.09.002.  Google Scholar

[11]

Springer-Verlag, Berlin, 2003.  Google Scholar

show all references

References:
[1]

Cours Spécialisés 8, Collection SMF, SMF et EDP Sciences, Paris, 2001.  Google Scholar

[2]

in Mechanics Day (Waterloo, ON, 1992), vol. 7 of Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 1996, 5-56.  Google Scholar

[3]

Annales de l'Institut Fourier, 59 (2009), 2593-2610. doi: 10.5802/aif.2501.  Google Scholar

[4]

Annales de l'Institut Fourier, 59 (2009), 2839-2890. doi: 10.5802/aif.2510.  Google Scholar

[5]

Mat. Zametki, 17 (1975), 113-117.  Google Scholar

[6]

Graduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1975.  Google Scholar

[7]

Amer. J. Math., 90 (1968), 1151-1164. doi: 10.2307/2373294.  Google Scholar

[8]

Internat. J. Geom. Methods in Modern Phys., 6 (2009), 1357-1390. doi: 10.1142/S0219887809004272.  Google Scholar

[9]

in Differential algebra, complex analysis and orthogonal polynomials, Contemp. Math., Amer. Math. Soc., Providence, RI, 509 (2010), 143-220. doi: 10.1090/conm/509/09980.  Google Scholar

[10]

Ann. Sci. Éc. Norm. Supér, 40 (2007), 845-884. doi: 10.1016/j.ansens.2007.09.002.  Google Scholar

[11]

Springer-Verlag, Berlin, 2003.  Google Scholar

[1]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[2]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[3]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[4]

Muhammad Aslam Noor, Khalida Inayat Noor. Properties of higher order preinvex functions. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 431-441. doi: 10.3934/naco.2020035

[5]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[6]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[7]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[8]

Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021019

[9]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[10]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001

[11]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406

[12]

Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268

[13]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[14]

Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021017

[15]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[16]

Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225

[17]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[18]

Fangyi Qin, Jun Wang, Jing Yang. Infinitely many positive solutions for Schrödinger-poisson systems with nonsymmetry potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021054

[19]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[20]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2947-2969. doi: 10.3934/dcds.2020392

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]