Advanced Search
Article Contents
Article Contents

Infinitely many radial solutions to elliptic systems involving critical exponents

Abstract Related Papers Cited by
  • In this paper, by an approximating argument, we obtain infinitely many radial solutions for the following elliptic systems with critical Sobolev growth $$ \left\lbrace\begin{array}{l} -\Delta u=|u|^{2^*-2}u + \frac{η \alpha}{\alpha+β}|u|^{\alpha-2}u |v|^β + \frac{σ p}{p+q} |u|^{p-2}u|v|^q , \ \ x ∈ B , \\ -\Delta v = |v|^{2^*-2}v + \frac{η β}{\alpha+ β } |u|^{\alpha }|v|^{β-2}v + \frac{σ q}{p+q} |u|^{p}|v|^{q-2}v , \ \ x ∈ B , \\ u = v = 0, \ \ &x \in \partial B, \end{array}\right. $$ where $N > \frac{2(p + q + 1) }{p + q - 1}, η, σ > 0, \alpha,β > 1$ and $\alpha + β = 2^* = : \frac{2N}{N-2} ,$ $p,\,q\ge 1$, $2\le p +q<2^*$ and $B\subset \mathbb{R}^N$ is an open ball centered at the origin.
    Mathematics Subject Classification: 35B33, 35J60.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.doi: 10.1006/jfan.1994.1078.


    H. Brézis, Nonlinear elliptic equations involving the critical Sobolev exponent-survey and perspectives, in "Directions in Partial Differential Equations" (Madison, WI, 1985), Publ. Math. Res. Center Univ. Wisconsin, 54, Academic Press, Boston, MA, (1987), 17-36.


    H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. (9), 58 (1979), 137-151.


    H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.doi: 10.1002/cpa.3160360405.


    T. Bartsch and M. Clapp, Critical point theory for indefinite functionals with symmetries, J. Funct. Anal., 138 (1996), 107-136.doi: 10.1006/jfan.1996.0058.


    T. Bartsch and D. G. de Figueiredo, Infinitely many solutions for nonlinear elliptic systems, in "Topics in Nonlinear Analysis," Progr. Nonlinear Differential Equations Appl., 35, Birkhäuser, Basel, (1999), 51-67.


    V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x)u =u^{\frac{N+2}{N-2}}$ in $\mathbbR^N$, J. Funct. Anal., 88 (1990), 90-117.doi: 10.1016/0022-1236(90)90120-A.


    D. Cao and S. Peng, A global compactness result for singular elliptic problems involving critical Sobolev exponent, Proc. Amer. Math. Soc., 131 (2003), 1857-1866.doi: 10.1090/S0002-9939-02-06729-1.


    D. Cao, S. Peng and S. Yan, Infinitely many solutions for $p$-Laplacian equation involving critical Sobolev growth, J. Funct. Anal., 262 (2012), 2861-2902.doi: 10.1016/j.jfa.2012.01.006.


    D. Cao and S. Yan, Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential, Calc. Var. Partial Differential Equations, 38 (2010), 471-501.doi: 10.1007/s00526-009-0295-5.


    D. Cao and S. Yan, Infinitely many solutions for an elliptic Neumann problem involving critical Sobolev growth, J. Differential Equations, 251 (2011), 1389-1414.doi: 10.1016/j.jde.2011.05.011.


    M. Clapp, Y. Ding and S. Hernández-Linares, Strongly indefinite functionals with perturbed symmetries and multiple solutions of nonsymmetric elliptic systems, Electron. J. Differential Equations, 100 (2004), 1-18.


    D. G. de Figueiredo and Y. H. Ding, Strongly indefinite functionals and multiple solutions of elliptic systems, Trans. Amer. Math. Soc., 355 (2003), 2973-2989.doi: 10.1090/S0002-9947-03-03257-4.


    G. Devillanova and S. Solimini, Concentration estimates and multiple solutions to elliptic problems at critical growth, Adv. Differential Equations, 7 (2002), 1257-1280.


    J. Garcia Azorero and I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc., 323 (1991), 877-895.doi: 10.2307/2001562.


    M. Grossi, A class of solutions for the Neumann problem $-\Delta u + \lambda u = u^{\frac{N+2}{N-2}}$, Duke Math. J., 79 (1995), 309-334.doi: 10.1215/S0012-7094-95-07908-3.


    T. Hsu and H. Lin, Multiple positive solutions for a critical elliptic system with concave-convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 1163-1177.doi: 10.1017/S0308210508000875.


    E. Jannelli, The role played by space dimension in elliptic critical problems, J. Differential Equations, 156 (1999), 407-426.doi: 10.1006/jdeq.1998.3589.


    D. Kang and S. Peng, Existence and asymptotic properties of solutions to elliptic systems involving multiple critical exponents, Sci. China Math., 54 (2011), 243-256.doi: 10.1007/s11425-010-4131-3.


    G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.doi: 10.1007/BF02418013.


    M. Willem, "Minimax Theorems," Progr. Nonlinear Differential Equations Appl., 24, Birkhäser Boston, Inc., Boston, MA, 1996.doi: 10.1007/978-1-4612-4146-1.

  • 加载中

Article Metrics

HTML views() PDF downloads(105) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint