\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Supercritical problems in domains with thin toroidal holes

Abstract / Introduction Related Papers Cited by
  • In this paper we study the Lane-Emden-Fowler equation $$ (P)_ \epsilon \quad \left\{ \begin{aligned} &\Delta u+|u|^{q-2}u=0\ &\hbox{in}\ \mathcal D_ \epsilon,\\ & u=0\ &\hbox{on}\ \partial\mathcal D_ \epsilon.\\ \end{aligned}\right. $$ Here $\mathcal D_ \epsilon=\mathcal D\setminus \left\{x\in \mathcal D\ :\ \mathrm{dist}(x,\Gamma_l)\le \epsilon \right\}$, $\mathcal D$ is a smooth bounded domain in $\mathbb{R}^N$, $\Gamma_l$ is an $l-$dimensional closed manifold such that $\Gamma_l\subset\mathcal D$ with $1\le l\le N-3$ and $q={2(N-l)\over N-l-2} .$ We prove that, under some symmetry assumptions, the number of sign changing solutions to $ (P)_ \epsilon$ increases as $\epsilon$ goes to zero.
    Mathematics Subject Classification: Primary: 35J60; Secondary: 35J20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Ackermann, M. Clápp and A. Pistoia, Boundary clustered layers near the higher critical exponents, J. Differential Equations, 254 (2013), 4168-4193.doi: 10.1016/j.jde.2013.02.015.

    [2]

    A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.doi: 10.1002/cpa.3160410302.

    [3]

    A. Bahri, Y.-Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Partial Diff. Eq., 3 (1995), 67-93.doi: 10.1007/BF01190892.

    [4]

    T. Bartsch, A. M. Micheletti and A. Pistoia, On the existence and the profile of nodal solutions of elliptic equations involving critical growth, Calc. Var. Partial Diff. Eq., 26 (2006), 265-282.doi: 10.1007/s00526-006-0004-6.

    [5]

    M. Clapp, J. Faya and A. Pistoia, Nonexistence and multiplicity of solutions to elliptic problems with supercritical exponents, Calc. Var. Partial Diff. Eq., 48 (2013), 611-623.doi: 10.1007/s00526-012-0564-6.

    [6]

    M. Clapp, J. Faya and A. Pistoia, Positive solutions to a supercritical elliptic problem which concentrate along a think spherical hole, J. Anal. Math., in press.

    [7]

    J. M. Coron, Topologie et cas limite des injections de sobolev, C. R. Acad. Sci. Paris Ser. I Math., 299 (1984), 209-212.

    [8]

    M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem, Calc. Var. Partial Diff. Eq., 16 (2003), 113-145.doi: 10.1007/s005260100142.

    [9]

    M. del Pino, M. Musso and F. Pacard, Bubbling along boundary geodesics near the second critical exponent, J. Eur. Math. Soc., 12 (2010), 1553-1605.doi: 10.4171/JEMS/241.

    [10]

    M. del Pino and J. Wei, Supercritical elliptic problems in domains with small holes, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 507-520.doi: 10.1016/j.anihpc.2006.03.001.

    [11]

    E. N. Dancer and J. Wei, Sign-changing solutions for supercritical elliptic problems in domains with small holes, Manuscripta Math, 123 (2007), 493-511.doi: 10.1007/s00229-007-0110-6.

    [12]

    Y. Ge, M. Musso and A. Pistoia, Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains, Commun. Partial Differ. Equ., 35 (2010), 1419-1457.doi: 10.1080/03605302.2010.490286.

    [13]

    S. Kim and A. Pistoia, Boundary towers of layers for some supercritical problems, J. Differential Equations, 255 (2013), 2302-2339.doi: 10.1016/j.jde.2013.06.017.

    [14]

    S. Kim and A. Pistoia, Clustered boundary layer sign changing solutions for a supercritical problem, J. London Math. Soc., 88 (2013), 227-250.doi: 10.1112/jlms/jdt006.

    [15]

    J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28 (1975), 567-597.doi: 10.1002/cpa.3160280502.

    [16]

    M. Musso and A. Pistoia, Sign changing solutions to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains, J. Math. Pures Appl., 86 (2006), 510-528.doi: 10.1016/j.matpur.2006.10.006.

    [17]

    M. Musso and A. Pistoia, Tower of bubbles for almost critical problems in general domains, J. Math. Pures Appl., 93 (2010), 1-40.doi: 10.1016/j.matpur.2009.08.001.

    [18]

    D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Func. Anal., 114 (1993), 97-105.doi: 10.1006/jfan.1993.1064.

    [19]

    D. Passaseo, New nonexistence results for elliptic equations with supercritical nonlinearity, Diff. Int. Equat., 8 (1995), 577-586.

    [20]

    S. I. Pohožaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.

    [21]

    A. Pistoia and T. Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325-340.doi: 10.1016/j.anihpc.2006.03.002.

    [22]

    S. Yan and J. Wei, Infinitely many positive solutions for an elliptic problem with critical or supercritical growth, J. Math Pures Appl., 96 (2011), 307-333.doi: 10.1016/j.matpur.2011.01.006.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return