-
Previous Article
Extreme value theory for random walks on homogeneous spaces
- DCDS Home
- This Issue
-
Next Article
Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity
Supercritical problems in domains with thin toroidal holes
1. | Departamento de Matemática, Pontificia Universidad Catóica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile |
2. | Dipartimento SBAI, Università di Roma "La Sapienza", via Antonio Scarpa 16, 00161 Roma |
References:
[1] |
J. Differential Equations, 254 (2013), 4168-4193.
doi: 10.1016/j.jde.2013.02.015. |
[2] |
Comm. Pure Appl. Math., 41 (1988), 253-294.
doi: 10.1002/cpa.3160410302. |
[3] |
Calc. Var. Partial Diff. Eq., 3 (1995), 67-93.
doi: 10.1007/BF01190892. |
[4] |
Calc. Var. Partial Diff. Eq., 26 (2006), 265-282.
doi: 10.1007/s00526-006-0004-6. |
[5] |
Calc. Var. Partial Diff. Eq., 48 (2013), 611-623.
doi: 10.1007/s00526-012-0564-6. |
[6] |
M. Clapp, J. Faya and A. Pistoia, Positive solutions to a supercritical elliptic problem which concentrate along a think spherical hole,, J. Anal. Math., (). Google Scholar |
[7] |
C. R. Acad. Sci. Paris Ser. I Math., 299 (1984), 209-212. |
[8] |
Calc. Var. Partial Diff. Eq., 16 (2003), 113-145.
doi: 10.1007/s005260100142. |
[9] |
J. Eur. Math. Soc., 12 (2010), 1553-1605.
doi: 10.4171/JEMS/241. |
[10] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 507-520.
doi: 10.1016/j.anihpc.2006.03.001. |
[11] |
Manuscripta Math, 123 (2007), 493-511.
doi: 10.1007/s00229-007-0110-6. |
[12] |
Commun. Partial Differ. Equ., 35 (2010), 1419-1457.
doi: 10.1080/03605302.2010.490286. |
[13] |
J. Differential Equations, 255 (2013), 2302-2339.
doi: 10.1016/j.jde.2013.06.017. |
[14] |
J. London Math. Soc., 88 (2013), 227-250.
doi: 10.1112/jlms/jdt006. |
[15] |
Comm. Pure Appl. Math., 28 (1975), 567-597.
doi: 10.1002/cpa.3160280502. |
[16] |
J. Math. Pures Appl., 86 (2006), 510-528.
doi: 10.1016/j.matpur.2006.10.006. |
[17] |
J. Math. Pures Appl., 93 (2010), 1-40.
doi: 10.1016/j.matpur.2009.08.001. |
[18] |
J. Func. Anal., 114 (1993), 97-105.
doi: 10.1006/jfan.1993.1064. |
[19] |
Diff. Int. Equat., 8 (1995), 577-586. |
[20] |
Dokl. Akad. Nauk SSSR, 165 (1965), 36-39. |
[21] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325-340.
doi: 10.1016/j.anihpc.2006.03.002. |
[22] |
J. Math Pures Appl., 96 (2011), 307-333.
doi: 10.1016/j.matpur.2011.01.006. |
show all references
References:
[1] |
J. Differential Equations, 254 (2013), 4168-4193.
doi: 10.1016/j.jde.2013.02.015. |
[2] |
Comm. Pure Appl. Math., 41 (1988), 253-294.
doi: 10.1002/cpa.3160410302. |
[3] |
Calc. Var. Partial Diff. Eq., 3 (1995), 67-93.
doi: 10.1007/BF01190892. |
[4] |
Calc. Var. Partial Diff. Eq., 26 (2006), 265-282.
doi: 10.1007/s00526-006-0004-6. |
[5] |
Calc. Var. Partial Diff. Eq., 48 (2013), 611-623.
doi: 10.1007/s00526-012-0564-6. |
[6] |
M. Clapp, J. Faya and A. Pistoia, Positive solutions to a supercritical elliptic problem which concentrate along a think spherical hole,, J. Anal. Math., (). Google Scholar |
[7] |
C. R. Acad. Sci. Paris Ser. I Math., 299 (1984), 209-212. |
[8] |
Calc. Var. Partial Diff. Eq., 16 (2003), 113-145.
doi: 10.1007/s005260100142. |
[9] |
J. Eur. Math. Soc., 12 (2010), 1553-1605.
doi: 10.4171/JEMS/241. |
[10] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 507-520.
doi: 10.1016/j.anihpc.2006.03.001. |
[11] |
Manuscripta Math, 123 (2007), 493-511.
doi: 10.1007/s00229-007-0110-6. |
[12] |
Commun. Partial Differ. Equ., 35 (2010), 1419-1457.
doi: 10.1080/03605302.2010.490286. |
[13] |
J. Differential Equations, 255 (2013), 2302-2339.
doi: 10.1016/j.jde.2013.06.017. |
[14] |
J. London Math. Soc., 88 (2013), 227-250.
doi: 10.1112/jlms/jdt006. |
[15] |
Comm. Pure Appl. Math., 28 (1975), 567-597.
doi: 10.1002/cpa.3160280502. |
[16] |
J. Math. Pures Appl., 86 (2006), 510-528.
doi: 10.1016/j.matpur.2006.10.006. |
[17] |
J. Math. Pures Appl., 93 (2010), 1-40.
doi: 10.1016/j.matpur.2009.08.001. |
[18] |
J. Func. Anal., 114 (1993), 97-105.
doi: 10.1006/jfan.1993.1064. |
[19] |
Diff. Int. Equat., 8 (1995), 577-586. |
[20] |
Dokl. Akad. Nauk SSSR, 165 (1965), 36-39. |
[21] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325-340.
doi: 10.1016/j.anihpc.2006.03.002. |
[22] |
J. Math Pures Appl., 96 (2011), 307-333.
doi: 10.1016/j.matpur.2011.01.006. |
[1] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[2] |
Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021037 |
[3] |
Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389 |
[4] |
Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021039 |
[5] |
Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029 |
[6] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[7] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[8] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006 |
[9] |
Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021060 |
[10] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[11] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[12] |
Shuang-Lin Jing, Hai-Feng Huo, Hong Xiang. Modelling the effects of ozone concentration and pulse vaccination on seasonal influenza outbreaks in Gansu Province, China. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021113 |
[13] |
Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021008 |
[14] |
Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2021, 13 (1) : 55-72. doi: 10.3934/jgm.2020031 |
[15] |
Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021053 |
[16] |
Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209 |
[17] |
Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021046 |
[18] |
Mingshang Hu, Shige Peng. G-Lévy processes under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 1-22. doi: 10.3934/puqr.2021001 |
[19] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[20] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]