November  2014, 34(11): 4671-4688. doi: 10.3934/dcds.2014.34.4671

Supercritical problems in domains with thin toroidal holes

1. 

Departamento de Matemática, Pontificia Universidad Catóica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile

2. 

Dipartimento SBAI, Università di Roma "La Sapienza", via Antonio Scarpa 16, 00161 Roma

Received  September 2013 Revised  December 2013 Published  May 2014

In this paper we study the Lane-Emden-Fowler equation $$ (P)_ \epsilon \quad \left\{ \begin{aligned} &\Delta u+|u|^{q-2}u=0\ &\hbox{in}\ \mathcal D_ \epsilon,\\ & u=0\ &\hbox{on}\ \partial\mathcal D_ \epsilon.\\ \end{aligned}\right. $$ Here $\mathcal D_ \epsilon=\mathcal D\setminus \left\{x\in \mathcal D\ :\ \mathrm{dist}(x,\Gamma_l)\le \epsilon \right\}$, $\mathcal D$ is a smooth bounded domain in $\mathbb{R}^N$, $\Gamma_l$ is an $l-$dimensional closed manifold such that $\Gamma_l\subset\mathcal D$ with $1\le l\le N-3$ and $q={2(N-l)\over N-l-2} .$ We prove that, under some symmetry assumptions, the number of sign changing solutions to $ (P)_ \epsilon$ increases as $\epsilon$ goes to zero.
Citation: Seunghyeok Kim, Angela Pistoia. Supercritical problems in domains with thin toroidal holes. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4671-4688. doi: 10.3934/dcds.2014.34.4671
References:
[1]

N. Ackermann, M. Clápp and A. Pistoia, Boundary clustered layers near the higher critical exponents,, J. Differential Equations, 254 (2013), 4168.  doi: 10.1016/j.jde.2013.02.015.  Google Scholar

[2]

A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain,, Comm. Pure Appl. Math., 41 (1988), 253.  doi: 10.1002/cpa.3160410302.  Google Scholar

[3]

A. Bahri, Y.-Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity,, Calc. Var. Partial Diff. Eq., 3 (1995), 67.  doi: 10.1007/BF01190892.  Google Scholar

[4]

T. Bartsch, A. M. Micheletti and A. Pistoia, On the existence and the profile of nodal solutions of elliptic equations involving critical growth,, Calc. Var. Partial Diff. Eq., 26 (2006), 265.  doi: 10.1007/s00526-006-0004-6.  Google Scholar

[5]

M. Clapp, J. Faya and A. Pistoia, Nonexistence and multiplicity of solutions to elliptic problems with supercritical exponents,, Calc. Var. Partial Diff. Eq., 48 (2013), 611.  doi: 10.1007/s00526-012-0564-6.  Google Scholar

[6]

M. Clapp, J. Faya and A. Pistoia, Positive solutions to a supercritical elliptic problem which concentrate along a think spherical hole,, J. Anal. Math., ().   Google Scholar

[7]

J. M. Coron, Topologie et cas limite des injections de sobolev,, C. R. Acad. Sci. Paris Ser. I Math., 299 (1984), 209.   Google Scholar

[8]

M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem,, Calc. Var. Partial Diff. Eq., 16 (2003), 113.  doi: 10.1007/s005260100142.  Google Scholar

[9]

M. del Pino, M. Musso and F. Pacard, Bubbling along boundary geodesics near the second critical exponent,, J. Eur. Math. Soc., 12 (2010), 1553.  doi: 10.4171/JEMS/241.  Google Scholar

[10]

M. del Pino and J. Wei, Supercritical elliptic problems in domains with small holes,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 507.  doi: 10.1016/j.anihpc.2006.03.001.  Google Scholar

[11]

E. N. Dancer and J. Wei, Sign-changing solutions for supercritical elliptic problems in domains with small holes,, Manuscripta Math, 123 (2007), 493.  doi: 10.1007/s00229-007-0110-6.  Google Scholar

[12]

Y. Ge, M. Musso and A. Pistoia, Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains,, Commun. Partial Differ. Equ., 35 (2010), 1419.  doi: 10.1080/03605302.2010.490286.  Google Scholar

[13]

S. Kim and A. Pistoia, Boundary towers of layers for some supercritical problems,, J. Differential Equations, 255 (2013), 2302.  doi: 10.1016/j.jde.2013.06.017.  Google Scholar

[14]

S. Kim and A. Pistoia, Clustered boundary layer sign changing solutions for a supercritical problem,, J. London Math. Soc., 88 (2013), 227.  doi: 10.1112/jlms/jdt006.  Google Scholar

[15]

J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations,, Comm. Pure Appl. Math., 28 (1975), 567.  doi: 10.1002/cpa.3160280502.  Google Scholar

[16]

M. Musso and A. Pistoia, Sign changing solutions to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains,, J. Math. Pures Appl., 86 (2006), 510.  doi: 10.1016/j.matpur.2006.10.006.  Google Scholar

[17]

M. Musso and A. Pistoia, Tower of bubbles for almost critical problems in general domains,, J. Math. Pures Appl., 93 (2010), 1.  doi: 10.1016/j.matpur.2009.08.001.  Google Scholar

[18]

D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains,, J. Func. Anal., 114 (1993), 97.  doi: 10.1006/jfan.1993.1064.  Google Scholar

[19]

D. Passaseo, New nonexistence results for elliptic equations with supercritical nonlinearity,, Diff. Int. Equat., 8 (1995), 577.   Google Scholar

[20]

S. I. Pohožaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$,, Dokl. Akad. Nauk SSSR, 165 (1965), 36.   Google Scholar

[21]

A. Pistoia and T. Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325.  doi: 10.1016/j.anihpc.2006.03.002.  Google Scholar

[22]

S. Yan and J. Wei, Infinitely many positive solutions for an elliptic problem with critical or supercritical growth,, J. Math Pures Appl., 96 (2011), 307.  doi: 10.1016/j.matpur.2011.01.006.  Google Scholar

show all references

References:
[1]

N. Ackermann, M. Clápp and A. Pistoia, Boundary clustered layers near the higher critical exponents,, J. Differential Equations, 254 (2013), 4168.  doi: 10.1016/j.jde.2013.02.015.  Google Scholar

[2]

A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain,, Comm. Pure Appl. Math., 41 (1988), 253.  doi: 10.1002/cpa.3160410302.  Google Scholar

[3]

A. Bahri, Y.-Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity,, Calc. Var. Partial Diff. Eq., 3 (1995), 67.  doi: 10.1007/BF01190892.  Google Scholar

[4]

T. Bartsch, A. M. Micheletti and A. Pistoia, On the existence and the profile of nodal solutions of elliptic equations involving critical growth,, Calc. Var. Partial Diff. Eq., 26 (2006), 265.  doi: 10.1007/s00526-006-0004-6.  Google Scholar

[5]

M. Clapp, J. Faya and A. Pistoia, Nonexistence and multiplicity of solutions to elliptic problems with supercritical exponents,, Calc. Var. Partial Diff. Eq., 48 (2013), 611.  doi: 10.1007/s00526-012-0564-6.  Google Scholar

[6]

M. Clapp, J. Faya and A. Pistoia, Positive solutions to a supercritical elliptic problem which concentrate along a think spherical hole,, J. Anal. Math., ().   Google Scholar

[7]

J. M. Coron, Topologie et cas limite des injections de sobolev,, C. R. Acad. Sci. Paris Ser. I Math., 299 (1984), 209.   Google Scholar

[8]

M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem,, Calc. Var. Partial Diff. Eq., 16 (2003), 113.  doi: 10.1007/s005260100142.  Google Scholar

[9]

M. del Pino, M. Musso and F. Pacard, Bubbling along boundary geodesics near the second critical exponent,, J. Eur. Math. Soc., 12 (2010), 1553.  doi: 10.4171/JEMS/241.  Google Scholar

[10]

M. del Pino and J. Wei, Supercritical elliptic problems in domains with small holes,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 507.  doi: 10.1016/j.anihpc.2006.03.001.  Google Scholar

[11]

E. N. Dancer and J. Wei, Sign-changing solutions for supercritical elliptic problems in domains with small holes,, Manuscripta Math, 123 (2007), 493.  doi: 10.1007/s00229-007-0110-6.  Google Scholar

[12]

Y. Ge, M. Musso and A. Pistoia, Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains,, Commun. Partial Differ. Equ., 35 (2010), 1419.  doi: 10.1080/03605302.2010.490286.  Google Scholar

[13]

S. Kim and A. Pistoia, Boundary towers of layers for some supercritical problems,, J. Differential Equations, 255 (2013), 2302.  doi: 10.1016/j.jde.2013.06.017.  Google Scholar

[14]

S. Kim and A. Pistoia, Clustered boundary layer sign changing solutions for a supercritical problem,, J. London Math. Soc., 88 (2013), 227.  doi: 10.1112/jlms/jdt006.  Google Scholar

[15]

J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations,, Comm. Pure Appl. Math., 28 (1975), 567.  doi: 10.1002/cpa.3160280502.  Google Scholar

[16]

M. Musso and A. Pistoia, Sign changing solutions to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains,, J. Math. Pures Appl., 86 (2006), 510.  doi: 10.1016/j.matpur.2006.10.006.  Google Scholar

[17]

M. Musso and A. Pistoia, Tower of bubbles for almost critical problems in general domains,, J. Math. Pures Appl., 93 (2010), 1.  doi: 10.1016/j.matpur.2009.08.001.  Google Scholar

[18]

D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains,, J. Func. Anal., 114 (1993), 97.  doi: 10.1006/jfan.1993.1064.  Google Scholar

[19]

D. Passaseo, New nonexistence results for elliptic equations with supercritical nonlinearity,, Diff. Int. Equat., 8 (1995), 577.   Google Scholar

[20]

S. I. Pohožaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$,, Dokl. Akad. Nauk SSSR, 165 (1965), 36.   Google Scholar

[21]

A. Pistoia and T. Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325.  doi: 10.1016/j.anihpc.2006.03.002.  Google Scholar

[22]

S. Yan and J. Wei, Infinitely many positive solutions for an elliptic problem with critical or supercritical growth,, J. Math Pures Appl., 96 (2011), 307.  doi: 10.1016/j.matpur.2011.01.006.  Google Scholar

[1]

Hichem Chtioui, Hichem Hajaiej, Marwa Soula. The scalar curvature problem on four-dimensional manifolds. Communications on Pure & Applied Analysis, 2020, 19 (2) : 723-746. doi: 10.3934/cpaa.2020034

[2]

Juncheng Wei, Jun Yang. Toda system and interior clustering line concentration for a singularly perturbed Neumann problem in two dimensional domain. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 465-508. doi: 10.3934/dcds.2008.22.465

[3]

Randa Ben Mahmoud, Hichem Chtioui. Prescribing the scalar curvature problem on higher-dimensional manifolds. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1857-1879. doi: 10.3934/dcds.2012.32.1857

[4]

Zhongyuan Liu. Concentration of solutions for the fractional Nirenberg problem. Communications on Pure & Applied Analysis, 2016, 15 (2) : 563-576. doi: 10.3934/cpaa.2016.15.563

[5]

Shuangjie Peng, Jing Zhou. Concentration of solutions for a Paneitz type problem. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1055-1072. doi: 10.3934/dcds.2010.26.1055

[6]

Sijia Zhong, Daoyuan Fang. $L^2$-concentration phenomenon for Zakharov system below energy norm II. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1117-1132. doi: 10.3934/cpaa.2009.8.1117

[7]

Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111

[8]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[9]

Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130

[10]

Liping Wang, Juncheng Wei. Infinite multiplicity for an inhomogeneous supercritical problem in entire space. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1243-1257. doi: 10.3934/cpaa.2013.12.1243

[11]

M. Ben Ayed, Kamal Ould Bouh. Nonexistence results of sign-changing solutions to a supercritical nonlinear problem. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1057-1075. doi: 10.3934/cpaa.2008.7.1057

[12]

Liping Wang. Arbitrarily many solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (3) : 761-778. doi: 10.3934/cpaa.2010.9.761

[13]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[14]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[15]

Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909

[16]

Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012

[17]

Paolo Maria Mariano. Line defect evolution in finite-dimensional manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 575-596. doi: 10.3934/dcdsb.2012.17.575

[18]

Mengyao Ding, Sining Zheng. $ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2971-2988. doi: 10.3934/dcdsb.2018295

[19]

Mengyao Ding, Xiangdong Zhao. $ L^\sigma $-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5297-5315. doi: 10.3934/dcdsb.2019059

[20]

Ruihong Ji, Yongfu Wang. Mass concentration phenomenon to the 2D Cauchy problem of the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1117-1133. doi: 10.3934/dcds.2019047

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]