November  2014, 34(11): 4735-4749. doi: 10.3934/dcds.2014.34.4735

Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems

1. 

School of Mathematics, Taiyuan University of Technology, Shanxi, 030024, China

2. 

Department of Mathematics, Shanghai University, Shanghai 200444, China

Received  July 2013 Revised  March 2014 Published  May 2014

In this paper we consider the existence and stability of traveling wave solutions to Cauchy problem of diagonalizable quasilinear hyperbolic systems. Under the appropriate small oscillation assumptions on the initial traveling waves, we derive the stability result of the traveling wave solutions, especially for intermediate traveling waves. As the important examples, we will apply the results to some systems arising in fluid dynamics and elementary particle physics.
Citation: Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735
References:
[1]

B. M. Barbashov, V. V. Nesterenko and A. M. Chervyakov, General solutions of nonlinear equations in the geometric theory of the relativistic string,, Commun. Math. Phys., 84 (1982), 471.  doi: 10.1007/BF01209629.  Google Scholar

[2]

G. Carbou, B. Hanouzet and R .Natalini, Semilinear behavior of totally linearly degenerate hyperbolic systems with relaxation,, J. Differential Equations, 246 (2009), 291.  doi: 10.1016/j.jde.2008.05.015.  Google Scholar

[3]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves,, Applied Mathematical Sciences, (1976).   Google Scholar

[4]

W. R. Dai and D. X. Kong, Asymptotic behavior of global classical solutions of general quasilinear hyperbolic systems with weakly linear degeneracy,, Chinese Annals of Mathematics, 27B (2006), 263.   Google Scholar

[5]

W. R. Dai and D. X. Kong, Global existence and asymptotic behavior of classical solutions of quasilnear hyperbolic systems with linear degenerate characteristic fields,, J.Differential Equations, 235 (2007), 127.  doi: 10.1016/j.jde.2006.12.020.  Google Scholar

[6]

D. X. Kong, Q. Zhang and Q. Zhou, The dynamics of relativistic strings moving in the Minkowski space $R^{1+n}$,, Commun. Math. Phys., 269 (2007), 153.  doi: 10.1007/s00220-006-0124-z.  Google Scholar

[7]

D. X. Kong and T. Yang, Asymptotic behavior of global classical solutions of quasilinear hyperbolic systems,, Comm. Partial Differemtial Equations, 28 (2003), 1203.  doi: 10.1081/PDE-120021192.  Google Scholar

[8]

D. X. Kong, Q. Y. Sun and Y. Zhou, The equation for time-like extremal surfaces in Minkowski space $R^{2+n}$,, Journal Math. Phy, 47 (2006).  doi: 10.1063/1.2158435.  Google Scholar

[9]

P. D. Lax, Hyperbolic systems of conservation laws $\mbox{I\!I}$,, Comm. Pure Appl. Math., 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[10]

T. T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems,, Research in Applied Mathematics, (1994).   Google Scholar

[11]

T. T. Li and W. C. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems,, Duke University Mathematics Series V, (1985).   Google Scholar

[12]

T. T. Li, Y. Zhou and D. X. Kong, Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems,, Comm. Partial Differential Equations, 19 (1994), 1263.  doi: 10.1080/03605309408821055.  Google Scholar

[13]

T. T. Li, Y. Zhou and D. X. Kong, Global classical solutions for general quasilinear hyperbolic systems with decay initial data,, Nonlinear Analysis, 28 (1997), 1299.  doi: 10.1016/0362-546X(95)00228-N.  Google Scholar

[14]

C. M. Liu and P. Qu, Existence and stability of traveling wave solutions to first-order quasilinear hyperbolic systems,, J. Math. Pures Appl., 100 (2013), 34.  doi: 10.1016/j.matpur.2012.10.011.  Google Scholar

[15]

J. L. Liu and Y. Zhou, Asymptotic behaviour of global classical solutions of diagonalizable quasilinear hyperbolic systems,, Math. Meth. Appl. Sci., 30 (2007), 479.  doi: 10.1002/mma.797.  Google Scholar

[16]

J. L. Liu and Y. Zhou, Initial-boundary value problem for the equation of time-like extremal surfaces in Minkowski space,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2890393.  Google Scholar

[17]

J. L. Liu and Y. Zhou, The initial-boundary value problem on a strip for the equation of time-like extremal surfaces in Minkowski space,, Discrete Contin. Dyn. Syst., 23 (2009), 381.  doi: 10.3934/dcds.2009.23.381.  Google Scholar

[18]

A. Majda, Compressible Fluid Flow and System of Conservation Laws in Several Space Variables,, Volume 53, (1984).  doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[19]

Y. J. Peng and Y. F. Yang, Well-posedness and long-time behavior of Lipschitz solutions to generalized extremal surface equations,, Journal of Mathematical Physics, 52 (2011).  doi: 10.1063/1.3591133.  Google Scholar

[20]

B. L. Rozdestvenkii and N. N. Janenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics,, Translated mathematical monographs 55, (1981).   Google Scholar

[21]

Z. Q. Shao, A note on the asymptotic behavior of global classical solutions of diagonalizable quasilinear hyperbolic systems,, Nonlinear Analysis, 73 (2010), 600.  doi: 10.1016/j.na.2010.03.029.  Google Scholar

[22]

Y. Zhou, Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy,, Chin.Ann.Math., 25 (2004), 37.  doi: 10.1142/S0252959904000044.  Google Scholar

show all references

References:
[1]

B. M. Barbashov, V. V. Nesterenko and A. M. Chervyakov, General solutions of nonlinear equations in the geometric theory of the relativistic string,, Commun. Math. Phys., 84 (1982), 471.  doi: 10.1007/BF01209629.  Google Scholar

[2]

G. Carbou, B. Hanouzet and R .Natalini, Semilinear behavior of totally linearly degenerate hyperbolic systems with relaxation,, J. Differential Equations, 246 (2009), 291.  doi: 10.1016/j.jde.2008.05.015.  Google Scholar

[3]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves,, Applied Mathematical Sciences, (1976).   Google Scholar

[4]

W. R. Dai and D. X. Kong, Asymptotic behavior of global classical solutions of general quasilinear hyperbolic systems with weakly linear degeneracy,, Chinese Annals of Mathematics, 27B (2006), 263.   Google Scholar

[5]

W. R. Dai and D. X. Kong, Global existence and asymptotic behavior of classical solutions of quasilnear hyperbolic systems with linear degenerate characteristic fields,, J.Differential Equations, 235 (2007), 127.  doi: 10.1016/j.jde.2006.12.020.  Google Scholar

[6]

D. X. Kong, Q. Zhang and Q. Zhou, The dynamics of relativistic strings moving in the Minkowski space $R^{1+n}$,, Commun. Math. Phys., 269 (2007), 153.  doi: 10.1007/s00220-006-0124-z.  Google Scholar

[7]

D. X. Kong and T. Yang, Asymptotic behavior of global classical solutions of quasilinear hyperbolic systems,, Comm. Partial Differemtial Equations, 28 (2003), 1203.  doi: 10.1081/PDE-120021192.  Google Scholar

[8]

D. X. Kong, Q. Y. Sun and Y. Zhou, The equation for time-like extremal surfaces in Minkowski space $R^{2+n}$,, Journal Math. Phy, 47 (2006).  doi: 10.1063/1.2158435.  Google Scholar

[9]

P. D. Lax, Hyperbolic systems of conservation laws $\mbox{I\!I}$,, Comm. Pure Appl. Math., 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[10]

T. T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems,, Research in Applied Mathematics, (1994).   Google Scholar

[11]

T. T. Li and W. C. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems,, Duke University Mathematics Series V, (1985).   Google Scholar

[12]

T. T. Li, Y. Zhou and D. X. Kong, Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems,, Comm. Partial Differential Equations, 19 (1994), 1263.  doi: 10.1080/03605309408821055.  Google Scholar

[13]

T. T. Li, Y. Zhou and D. X. Kong, Global classical solutions for general quasilinear hyperbolic systems with decay initial data,, Nonlinear Analysis, 28 (1997), 1299.  doi: 10.1016/0362-546X(95)00228-N.  Google Scholar

[14]

C. M. Liu and P. Qu, Existence and stability of traveling wave solutions to first-order quasilinear hyperbolic systems,, J. Math. Pures Appl., 100 (2013), 34.  doi: 10.1016/j.matpur.2012.10.011.  Google Scholar

[15]

J. L. Liu and Y. Zhou, Asymptotic behaviour of global classical solutions of diagonalizable quasilinear hyperbolic systems,, Math. Meth. Appl. Sci., 30 (2007), 479.  doi: 10.1002/mma.797.  Google Scholar

[16]

J. L. Liu and Y. Zhou, Initial-boundary value problem for the equation of time-like extremal surfaces in Minkowski space,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2890393.  Google Scholar

[17]

J. L. Liu and Y. Zhou, The initial-boundary value problem on a strip for the equation of time-like extremal surfaces in Minkowski space,, Discrete Contin. Dyn. Syst., 23 (2009), 381.  doi: 10.3934/dcds.2009.23.381.  Google Scholar

[18]

A. Majda, Compressible Fluid Flow and System of Conservation Laws in Several Space Variables,, Volume 53, (1984).  doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[19]

Y. J. Peng and Y. F. Yang, Well-posedness and long-time behavior of Lipschitz solutions to generalized extremal surface equations,, Journal of Mathematical Physics, 52 (2011).  doi: 10.1063/1.3591133.  Google Scholar

[20]

B. L. Rozdestvenkii and N. N. Janenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics,, Translated mathematical monographs 55, (1981).   Google Scholar

[21]

Z. Q. Shao, A note on the asymptotic behavior of global classical solutions of diagonalizable quasilinear hyperbolic systems,, Nonlinear Analysis, 73 (2010), 600.  doi: 10.1016/j.na.2010.03.029.  Google Scholar

[22]

Y. Zhou, Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy,, Chin.Ann.Math., 25 (2004), 37.  doi: 10.1142/S0252959904000044.  Google Scholar

[1]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[2]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[3]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[4]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[5]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[6]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[7]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[8]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[9]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[10]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[11]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[12]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[13]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[14]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[15]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[16]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[17]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[18]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[19]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[20]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]