Citation: |
[1] |
B. M. Barbashov, V. V. Nesterenko and A. M. Chervyakov, General solutions of nonlinear equations in the geometric theory of the relativistic string, Commun. Math. Phys., 84 (1982), 471-481.doi: 10.1007/BF01209629. |
[2] |
G. Carbou, B. Hanouzet and R .Natalini, Semilinear behavior of totally linearly degenerate hyperbolic systems with relaxation, J. Differential Equations, 246 (2009), 291-319.doi: 10.1016/j.jde.2008.05.015. |
[3] |
R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Applied Mathematical Sciences, Vol. 21. Springer-Verlag, New York-Heidelberg, 1976. |
[4] |
W. R. Dai and D. X. Kong, Asymptotic behavior of global classical solutions of general quasilinear hyperbolic systems with weakly linear degeneracy, Chinese Annals of Mathematics, 27B (2006), 263-286. |
[5] |
W. R. Dai and D. X. Kong, Global existence and asymptotic behavior of classical solutions of quasilnear hyperbolic systems with linear degenerate characteristic fields, J.Differential Equations, 235 (2007), 127-165.doi: 10.1016/j.jde.2006.12.020. |
[6] |
D. X. Kong, Q. Zhang and Q. Zhou, The dynamics of relativistic strings moving in the Minkowski space $R^{1+n}$, Commun. Math. Phys., 269 (2007), 153-174.doi: 10.1007/s00220-006-0124-z. |
[7] |
D. X. Kong and T. Yang, Asymptotic behavior of global classical solutions of quasilinear hyperbolic systems, Comm. Partial Differemtial Equations, 28 (2003), 1203-1220.doi: 10.1081/PDE-120021192. |
[8] |
D. X. Kong, Q. Y. Sun and Y. Zhou, The equation for time-like extremal surfaces in Minkowski space $R^{2+n}$, Journal Math. Phy, 47 (2006), 013503,16pp.doi: 10.1063/1.2158435. |
[9] |
P. D. Lax, Hyperbolic systems of conservation laws $\mbox{I\!I}$, Comm. Pure Appl. Math., 10 (1957), 537-566.doi: 10.1002/cpa.3160100406. |
[10] |
T. T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, Research in Applied Mathematics, Masson/ John Wiley, Paris, 1994. |
[11] |
T. T. Li and W. C. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Mathematics Series V, 1985. |
[12] |
T. T. Li, Y. Zhou and D. X. Kong, Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems, Comm. Partial Differential Equations, 19 (1994), 1263-1317.doi: 10.1080/03605309408821055. |
[13] |
T. T. Li, Y. Zhou and D. X. Kong, Global classical solutions for general quasilinear hyperbolic systems with decay initial data, Nonlinear Analysis, 28 (1997), 1299-1332.doi: 10.1016/0362-546X(95)00228-N. |
[14] |
C. M. Liu and P. Qu, Existence and stability of traveling wave solutions to first-order quasilinear hyperbolic systems, J. Math. Pures Appl., 100 (2013), 34-68.doi: 10.1016/j.matpur.2012.10.011. |
[15] |
J. L. Liu and Y. Zhou, Asymptotic behaviour of global classical solutions of diagonalizable quasilinear hyperbolic systems, Math. Meth. Appl. Sci., 30 (2007), 479-500.doi: 10.1002/mma.797. |
[16] |
J. L. Liu and Y. Zhou, Initial-boundary value problem for the equation of time-like extremal surfaces in Minkowski space, J. Math. Phys., 49 (2008), 043507, 26pp.doi: 10.1063/1.2890393. |
[17] |
J. L. Liu and Y. Zhou, The initial-boundary value problem on a strip for the equation of time-like extremal surfaces in Minkowski space, Discrete Contin. Dyn. Syst., 23 (2009), 381-397.doi: 10.3934/dcds.2009.23.381. |
[18] |
A. Majda, Compressible Fluid Flow and System of Conservation Laws in Several Space Variables, Volume 53, Applied Mathematical Sciences, Springer, New York, 1984.doi: 10.1007/978-1-4612-1116-7. |
[19] |
Y. J. Peng and Y. F. Yang, Well-posedness and long-time behavior of Lipschitz solutions to generalized extremal surface equations, Journal of Mathematical Physics, 52 (2011), 053702, 23pp.doi: 10.1063/1.3591133. |
[20] |
B. L. Rozdestvenkii and N. N. Janenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Translated mathematical monographs 55, American Math. Soc., Providence, RI, 1981. |
[21] |
Z. Q. Shao, A note on the asymptotic behavior of global classical solutions of diagonalizable quasilinear hyperbolic systems, Nonlinear Analysis, 73 (2010), 600-613.doi: 10.1016/j.na.2010.03.029. |
[22] |
Y. Zhou, Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy, Chin.Ann.Math., 25 (2004), 37-56.doi: 10.1142/S0252959904000044. |