\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems

Abstract Related Papers Cited by
  • In this paper we consider the existence and stability of traveling wave solutions to Cauchy problem of diagonalizable quasilinear hyperbolic systems. Under the appropriate small oscillation assumptions on the initial traveling waves, we derive the stability result of the traveling wave solutions, especially for intermediate traveling waves. As the important examples, we will apply the results to some systems arising in fluid dynamics and elementary particle physics.
    Mathematics Subject Classification: Primary: 35C07, 37C75; Secondary: 35L45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. M. Barbashov, V. V. Nesterenko and A. M. Chervyakov, General solutions of nonlinear equations in the geometric theory of the relativistic string, Commun. Math. Phys., 84 (1982), 471-481.doi: 10.1007/BF01209629.

    [2]

    G. Carbou, B. Hanouzet and R .Natalini, Semilinear behavior of totally linearly degenerate hyperbolic systems with relaxation, J. Differential Equations, 246 (2009), 291-319.doi: 10.1016/j.jde.2008.05.015.

    [3]

    R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Applied Mathematical Sciences, Vol. 21. Springer-Verlag, New York-Heidelberg, 1976.

    [4]

    W. R. Dai and D. X. Kong, Asymptotic behavior of global classical solutions of general quasilinear hyperbolic systems with weakly linear degeneracy, Chinese Annals of Mathematics, 27B (2006), 263-286.

    [5]

    W. R. Dai and D. X. Kong, Global existence and asymptotic behavior of classical solutions of quasilnear hyperbolic systems with linear degenerate characteristic fields, J.Differential Equations, 235 (2007), 127-165.doi: 10.1016/j.jde.2006.12.020.

    [6]

    D. X. Kong, Q. Zhang and Q. Zhou, The dynamics of relativistic strings moving in the Minkowski space $R^{1+n}$, Commun. Math. Phys., 269 (2007), 153-174.doi: 10.1007/s00220-006-0124-z.

    [7]

    D. X. Kong and T. Yang, Asymptotic behavior of global classical solutions of quasilinear hyperbolic systems, Comm. Partial Differemtial Equations, 28 (2003), 1203-1220.doi: 10.1081/PDE-120021192.

    [8]

    D. X. Kong, Q. Y. Sun and Y. Zhou, The equation for time-like extremal surfaces in Minkowski space $R^{2+n}$, Journal Math. Phy, 47 (2006), 013503,16pp.doi: 10.1063/1.2158435.

    [9]

    P. D. Lax, Hyperbolic systems of conservation laws $\mbox{I\!I}$, Comm. Pure Appl. Math., 10 (1957), 537-566.doi: 10.1002/cpa.3160100406.

    [10]

    T. T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, Research in Applied Mathematics, Masson/ John Wiley, Paris, 1994.

    [11]

    T. T. Li and W. C. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Mathematics Series V, 1985.

    [12]

    T. T. Li, Y. Zhou and D. X. Kong, Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems, Comm. Partial Differential Equations, 19 (1994), 1263-1317.doi: 10.1080/03605309408821055.

    [13]

    T. T. Li, Y. Zhou and D. X. Kong, Global classical solutions for general quasilinear hyperbolic systems with decay initial data, Nonlinear Analysis, 28 (1997), 1299-1332.doi: 10.1016/0362-546X(95)00228-N.

    [14]

    C. M. Liu and P. Qu, Existence and stability of traveling wave solutions to first-order quasilinear hyperbolic systems, J. Math. Pures Appl., 100 (2013), 34-68.doi: 10.1016/j.matpur.2012.10.011.

    [15]

    J. L. Liu and Y. Zhou, Asymptotic behaviour of global classical solutions of diagonalizable quasilinear hyperbolic systems, Math. Meth. Appl. Sci., 30 (2007), 479-500.doi: 10.1002/mma.797.

    [16]

    J. L. Liu and Y. Zhou, Initial-boundary value problem for the equation of time-like extremal surfaces in Minkowski space, J. Math. Phys., 49 (2008), 043507, 26pp.doi: 10.1063/1.2890393.

    [17]

    J. L. Liu and Y. Zhou, The initial-boundary value problem on a strip for the equation of time-like extremal surfaces in Minkowski space, Discrete Contin. Dyn. Syst., 23 (2009), 381-397.doi: 10.3934/dcds.2009.23.381.

    [18]

    A. Majda, Compressible Fluid Flow and System of Conservation Laws in Several Space Variables, Volume 53, Applied Mathematical Sciences, Springer, New York, 1984.doi: 10.1007/978-1-4612-1116-7.

    [19]

    Y. J. Peng and Y. F. Yang, Well-posedness and long-time behavior of Lipschitz solutions to generalized extremal surface equations, Journal of Mathematical Physics, 52 (2011), 053702, 23pp.doi: 10.1063/1.3591133.

    [20]

    B. L. Rozdestvenkii and N. N. Janenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Translated mathematical monographs 55, American Math. Soc., Providence, RI, 1981.

    [21]

    Z. Q. Shao, A note on the asymptotic behavior of global classical solutions of diagonalizable quasilinear hyperbolic systems, Nonlinear Analysis, 73 (2010), 600-613.doi: 10.1016/j.na.2010.03.029.

    [22]

    Y. Zhou, Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy, Chin.Ann.Math., 25 (2004), 37-56.doi: 10.1142/S0252959904000044.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(65) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return