November  2014, 34(11): 4751-4764. doi: 10.3934/dcds.2014.34.4751

Non-normal numbers in dynamical systems fulfilling the specification property

1. 

Université de Lorraine, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy, F-54506

2. 

Université Joseph Fourier, Institut Fourier, 100 rue des maths, 38402 St Martin d'Hères, France

Received  November 2013 Revised  February 2014 Published  May 2014

In the present paper we want to focus on the dichotomy of the non-normal numbers -- on the one hand they are a set of measure zero and on the other hand they are residual -- for dynamical system fulfilling the specification property. These dynamical systems are motivated by $\beta$-expansions. We consider the limiting frequencies of digits in the words of the languagse arising from these dynamical systems, and show that not only a typical $x$ in the sense of Baire is non-normal, but also its Cesàro variants diverge.
Citation: Manfred G. Madritsch, Izabela Petrykiewicz. Non-normal numbers in dynamical systems fulfilling the specification property. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4751-4764. doi: 10.3934/dcds.2014.34.4751
References:
[1]

S. Albeverio, M. Pratsiovytyi and G. Torbin, Singular probability distributions and fractal properties of sets of real numbers defined by the asymptotic frequencies of their $s$-adic digits,, Ukraïn. Mat. Zh., 57 (2005), 1163.  doi: 10.1007/s11253-006-0001-0.  Google Scholar

[2]

S. Albeverio, M. Pratsiovytyi and G. Torbin, Topological and fractal properties of real numbers which are not normal,, Bull. Sci. Math., 129 (2005), 615.  doi: 10.1016/j.bulsci.2004.12.004.  Google Scholar

[3]

I.-S. Baek and L. Olsen, Baire category and extremely non-normal points of invariant sets of IFS's,, Discrete Contin. Dyn. Syst., 27 (2010), 935.  doi: 10.3934/dcds.2010.27.935.  Google Scholar

[4]

A. Bertrand-Mathis, Points génériques de Champernowne sur certains systèmes codes; application aux $\theta$-shifts,, Ergodic Theory Dynam. Systems, 8 (1988), 35.  doi: 10.1017/S0143385700004302.  Google Scholar

[5]

A. Bertrand-Mathis and B. Volkmann, On $(\epsilon,k)$-normal words in connecting dynamical systems,, Monatsh. Math., 107 (1989), 267.  doi: 10.1007/BF01517354.  Google Scholar

[6]

E. Borel, Les probabilités dénombrables et leurs applications arithmétiques,, Palermo Rend., 27 (1909), 247.   Google Scholar

[7]

K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers, vol. 29 of Carus Mathematical Monographs,, Mathematical Association of America, (2002).   Google Scholar

[8]

A. O. Gelfond, A common property of number systems,, Izv. Akad. Nauk SSSR. Ser. Mat., 23 (1959), 809.   Google Scholar

[9]

J. Hyde, V. Laschos, L. Olsen, I. Petrykiewicz and A. Shaw, Iterated Cesàro averages, frequencies of digits, and Baire category,, Acta Arith., 144 (2010), 287.  doi: 10.4064/aa144-3-6.  Google Scholar

[10]

S. Ito and I. Shiokawa, A construction of $\beta $-normal sequences,, J. Math. Soc. Japan, 27 (1975), 20.  doi: 10.2969/jmsj/02710020.  Google Scholar

[11]

M. G. Madritsch, Non-normal numbers with respect to markov partitions,, Discrete Contin. Dyn. Syst., 34 (2014), 663.  doi: 10.3934/dcds.2014.34.663.  Google Scholar

[12]

L. Olsen, Extremely non-normal continued fractions,, Acta Arith., 108 (2003), 191.  doi: 10.4064/aa108-2-8.  Google Scholar

[13]

L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages,, J. Math. Pures Appl. (9), 82 (2003), 1591.  doi: 10.1016/j.matpur.2003.09.007.  Google Scholar

[14]

L. Olsen, Applications of multifractal divergence points to sets of numbers defined by their $N$-adic expansion,, Math. Proc. Cambridge Philos. Soc., 136 (2004), 139.  doi: 10.1017/S0305004103007047.  Google Scholar

[15]

L. Olsen, Applications of multifractal divergence points to some sets of {$d$}-tuples of numbers defined by their $N$-adic expansion,, Bull. Sci. Math., 128 (2004), 265.  doi: 10.1016/j.bulsci.2004.01.003.  Google Scholar

[16]

L. Olsen, Extremely non-normal numbers,, Math. Proc. Cambridge Philos. Soc., 137 (2004), 43.  doi: 10.1017/S0305004104007601.  Google Scholar

[17]

L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures,, J. London Math. Soc. (2), 67 (2003), 103.  doi: 10.1112/S0024610702003630.  Google Scholar

[18]

L. Olsen and S. Winter, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. II. Non-linearity, divergence points and Banach space valued spectra,, Bull. Sci. Math., 131 (2007), 518.  doi: 10.1016/j.bulsci.2006.05.005.  Google Scholar

[19]

W. Parry, On the $\beta $-expansions of real numbers,, Acta Math. Acad. Sci. Hungar., 11 (1960), 401.  doi: 10.1007/BF02020954.  Google Scholar

[20]

A. Rényi, Representations for real numbers and their ergodic properties,, Acta Math. Acad. Sci. Hungar, 8 (1957), 477.   Google Scholar

[21]

T. Šalát, Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen,, Czechoslovak Math. J., 18 (93) (1968), 489.   Google Scholar

[22]

T. Šalát, A remark on normal numbers,, Rev. Roumaine Math. Pures Appl., 11 (1966), 53.   Google Scholar

[23]

T. Šalát, Über die Cantorschen Reihen,, Czechoslovak Math. J., 18 (93) (1968), 25.   Google Scholar

[24]

K. Sigmund, On dynamical systems with the specification property,, Trans. Amer. Math. Soc., 190 (1974), 285.  doi: 10.1090/S0002-9947-1974-0352411-X.  Google Scholar

[25]

B. Volkmann, On non-normal numbers,, Compositio Math., 16 (1964), 186.   Google Scholar

show all references

References:
[1]

S. Albeverio, M. Pratsiovytyi and G. Torbin, Singular probability distributions and fractal properties of sets of real numbers defined by the asymptotic frequencies of their $s$-adic digits,, Ukraïn. Mat. Zh., 57 (2005), 1163.  doi: 10.1007/s11253-006-0001-0.  Google Scholar

[2]

S. Albeverio, M. Pratsiovytyi and G. Torbin, Topological and fractal properties of real numbers which are not normal,, Bull. Sci. Math., 129 (2005), 615.  doi: 10.1016/j.bulsci.2004.12.004.  Google Scholar

[3]

I.-S. Baek and L. Olsen, Baire category and extremely non-normal points of invariant sets of IFS's,, Discrete Contin. Dyn. Syst., 27 (2010), 935.  doi: 10.3934/dcds.2010.27.935.  Google Scholar

[4]

A. Bertrand-Mathis, Points génériques de Champernowne sur certains systèmes codes; application aux $\theta$-shifts,, Ergodic Theory Dynam. Systems, 8 (1988), 35.  doi: 10.1017/S0143385700004302.  Google Scholar

[5]

A. Bertrand-Mathis and B. Volkmann, On $(\epsilon,k)$-normal words in connecting dynamical systems,, Monatsh. Math., 107 (1989), 267.  doi: 10.1007/BF01517354.  Google Scholar

[6]

E. Borel, Les probabilités dénombrables et leurs applications arithmétiques,, Palermo Rend., 27 (1909), 247.   Google Scholar

[7]

K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers, vol. 29 of Carus Mathematical Monographs,, Mathematical Association of America, (2002).   Google Scholar

[8]

A. O. Gelfond, A common property of number systems,, Izv. Akad. Nauk SSSR. Ser. Mat., 23 (1959), 809.   Google Scholar

[9]

J. Hyde, V. Laschos, L. Olsen, I. Petrykiewicz and A. Shaw, Iterated Cesàro averages, frequencies of digits, and Baire category,, Acta Arith., 144 (2010), 287.  doi: 10.4064/aa144-3-6.  Google Scholar

[10]

S. Ito and I. Shiokawa, A construction of $\beta $-normal sequences,, J. Math. Soc. Japan, 27 (1975), 20.  doi: 10.2969/jmsj/02710020.  Google Scholar

[11]

M. G. Madritsch, Non-normal numbers with respect to markov partitions,, Discrete Contin. Dyn. Syst., 34 (2014), 663.  doi: 10.3934/dcds.2014.34.663.  Google Scholar

[12]

L. Olsen, Extremely non-normal continued fractions,, Acta Arith., 108 (2003), 191.  doi: 10.4064/aa108-2-8.  Google Scholar

[13]

L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages,, J. Math. Pures Appl. (9), 82 (2003), 1591.  doi: 10.1016/j.matpur.2003.09.007.  Google Scholar

[14]

L. Olsen, Applications of multifractal divergence points to sets of numbers defined by their $N$-adic expansion,, Math. Proc. Cambridge Philos. Soc., 136 (2004), 139.  doi: 10.1017/S0305004103007047.  Google Scholar

[15]

L. Olsen, Applications of multifractal divergence points to some sets of {$d$}-tuples of numbers defined by their $N$-adic expansion,, Bull. Sci. Math., 128 (2004), 265.  doi: 10.1016/j.bulsci.2004.01.003.  Google Scholar

[16]

L. Olsen, Extremely non-normal numbers,, Math. Proc. Cambridge Philos. Soc., 137 (2004), 43.  doi: 10.1017/S0305004104007601.  Google Scholar

[17]

L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures,, J. London Math. Soc. (2), 67 (2003), 103.  doi: 10.1112/S0024610702003630.  Google Scholar

[18]

L. Olsen and S. Winter, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. II. Non-linearity, divergence points and Banach space valued spectra,, Bull. Sci. Math., 131 (2007), 518.  doi: 10.1016/j.bulsci.2006.05.005.  Google Scholar

[19]

W. Parry, On the $\beta $-expansions of real numbers,, Acta Math. Acad. Sci. Hungar., 11 (1960), 401.  doi: 10.1007/BF02020954.  Google Scholar

[20]

A. Rényi, Representations for real numbers and their ergodic properties,, Acta Math. Acad. Sci. Hungar, 8 (1957), 477.   Google Scholar

[21]

T. Šalát, Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen,, Czechoslovak Math. J., 18 (93) (1968), 489.   Google Scholar

[22]

T. Šalát, A remark on normal numbers,, Rev. Roumaine Math. Pures Appl., 11 (1966), 53.   Google Scholar

[23]

T. Šalát, Über die Cantorschen Reihen,, Czechoslovak Math. J., 18 (93) (1968), 25.   Google Scholar

[24]

K. Sigmund, On dynamical systems with the specification property,, Trans. Amer. Math. Soc., 190 (1974), 285.  doi: 10.1090/S0002-9947-1974-0352411-X.  Google Scholar

[25]

B. Volkmann, On non-normal numbers,, Compositio Math., 16 (1964), 186.   Google Scholar

[1]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[2]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[3]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[4]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[5]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[6]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[9]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[10]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[11]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[12]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[13]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[14]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[15]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[16]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[17]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[18]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[19]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[20]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]