-
Previous Article
Self-intersections of trajectories of the Lorentz process
- DCDS Home
- This Issue
-
Next Article
Non-normal numbers in dynamical systems fulfilling the specification property
The structure of limit sets for $\mathbb{Z}^d$ actions
1. | Department of Mathematics, Baylor University, Waco, TX 76798-7328, United States, United States |
References:
[1] |
Acta Math. Hungar., 88 (2000), 291-300.
doi: 10.1023/A:1026775906693. |
[2] |
Ergodic Theory Dynam. Systems, 30 (2010), 21-31.
doi: 10.1017/S0143385708001089. |
[3] |
Fund. Math., 207 (2010), 161-174.
doi: 10.4064/fm207-2-4. |
[4] |
Discrete Contin. Dyn. Syst., 33 (2013), 1819-1833.
doi: 10.3934/dcds.2013.33.1819. |
[5] |
American Mathematical Society, Providence, R. I., 1955. |
[6] |
J. Dynam. Differential Equations, 13 (2001), 107-131.
doi: 10.1023/A:1009044515567. |
[7] |
Invent. Math., 176 (2009), 131-167.
doi: 10.1007/s00222-008-0161-7. |
[8] |
Ann. of Math. (2), 171 (2010), 2011-2038.
doi: 10.4007/annals.2010.171.2011. |
[9] |
Cambridge University Press, Cambridge, 1995. |
[10] |
Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511626302. |
[11] |
Discrete Contin. Dyn. Syst., 20 (2008), 1039-1056.
doi: 10.3934/dcds.2008.20.1039. |
[12] |
Colloq. Math., 110 (2008), 451-460.
doi: 10.4064/cm110-2-8. |
[13] |
Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. |
show all references
References:
[1] |
Acta Math. Hungar., 88 (2000), 291-300.
doi: 10.1023/A:1026775906693. |
[2] |
Ergodic Theory Dynam. Systems, 30 (2010), 21-31.
doi: 10.1017/S0143385708001089. |
[3] |
Fund. Math., 207 (2010), 161-174.
doi: 10.4064/fm207-2-4. |
[4] |
Discrete Contin. Dyn. Syst., 33 (2013), 1819-1833.
doi: 10.3934/dcds.2013.33.1819. |
[5] |
American Mathematical Society, Providence, R. I., 1955. |
[6] |
J. Dynam. Differential Equations, 13 (2001), 107-131.
doi: 10.1023/A:1009044515567. |
[7] |
Invent. Math., 176 (2009), 131-167.
doi: 10.1007/s00222-008-0161-7. |
[8] |
Ann. of Math. (2), 171 (2010), 2011-2038.
doi: 10.4007/annals.2010.171.2011. |
[9] |
Cambridge University Press, Cambridge, 1995. |
[10] |
Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511626302. |
[11] |
Discrete Contin. Dyn. Syst., 20 (2008), 1039-1056.
doi: 10.3934/dcds.2008.20.1039. |
[12] |
Colloq. Math., 110 (2008), 451-460.
doi: 10.4064/cm110-2-8. |
[13] |
Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. |
[1] |
Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021040 |
[2] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[3] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[4] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073 |
[5] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[6] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[7] |
Jaume Llibre, Claudia Valls. Rational limit cycles of Abel equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1077-1089. doi: 10.3934/cpaa.2021007 |
[8] |
Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015 |
[9] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[10] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[11] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[12] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003 |
[13] |
Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361 |
[14] |
Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037 |
[15] |
Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190 |
[16] |
Yunjuan Jin, Aifang Qu, Hairong Yuan. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021048 |
[17] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015 |
[18] |
Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004 |
[19] |
Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023 |
[20] |
Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]