\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The structure of limit sets for $\mathbb{Z}^d$ actions

Abstract Related Papers Cited by
  • Central to the study of $\mathbb{Z}$ actions on compact metric spaces is the $\omega$-limit set, the set of all limit points of a forward orbit. A closed set $K$ is internally chain transitive provided for every $x,y\in K$ there is an $\epsilon$-pseudo-orbit of points from $K$ that starts with $x$ and ends with $y$. It is known in several settings that the property of internal chain transitivity characterizes $\omega$-limit sets. In this paper, we consider actions of $\mathbb{Z}^d$ on compact metric spaces. We give a general definition for shadowing and limit sets in this setting. We characterize limit sets in terms of a more general internal property which we call internal mesh transitivity.
    Mathematics Subject Classification: Primary: 37B50, 37B10, 37B20; Secondary: 54H20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Balibrea and C. La Paz, A characterization of the $\omega$-limit sets of interval maps, Acta Math. Hungar., 88 (2000), 291-300.doi: 10.1023/A:1026775906693.

    [2]

    A. D. Barwell, C. Good, R. Knight and B. E. Raines, A characterization of $\omega$-limit sets in shift spaces, Ergodic Theory Dynam. Systems, 30 (2010), 21-31.doi: 10.1017/S0143385708001089.

    [3]

    A. D. Barwell, A characterization of $\omega$-limit sets of piecewise monotone maps of the interval, Fund. Math., 207 (2010), 161-174.doi: 10.4064/fm207-2-4.

    [4]

    A. D. Barwell, C. Good, P. Oprocha and B. E. Raines, Characterizations of $\omega$-limit sets of topologically hyperbolic spaces, Discrete Contin. Dyn. Syst., 33 (2013), 1819-1833.doi: 10.3934/dcds.2013.33.1819.

    [5]

    W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, American Mathematical Society, Providence, R. I., 1955.

    [6]

    M. W. Hirsch, H.L. Smith and X. Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems, J. Dynam. Differential Equations, 13 (2001), 107-131.doi: 10.1023/A:1009044515567.

    [7]

    M. Hochman, On the dynamics and recursive properties of multidimensional symbolic systems, Invent. Math., 176 (2009), 131-167.doi: 10.1007/s00222-008-0161-7.

    [8]

    M. Hochman and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type, Ann. of Math. (2), 171 (2010), 2011-2038.doi: 10.4007/annals.2010.171.2011.

    [9]

    A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995.

    [10]

    D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511626302.

    [11]

    P. Oprocha, Chain recurrence in multidimensional time discrete dynamical systems, Discrete Contin. Dyn. Syst., 20 (2008), 1039-1056.doi: 10.3934/dcds.2008.20.1039.

    [12]

    P. Oprocha, Shadowing in multi-dimensional shift spaces, Colloq. Math., 110 (2008), 451-460.doi: 10.4064/cm110-2-8.

    [13]

    P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(65) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return