November  2014, 34(11): 4781-4806. doi: 10.3934/dcds.2014.34.4781

Self-intersections of trajectories of the Lorentz process

1. 

Université de Brest, UMR CNRS 6205, Laboratoire de Mathématique de Bretagne Atlantique, 6 avenue Le Gorgeu, 29238 Brest cedex, France

Received  April 2013 Revised  February 2014 Published  May 2014

We are interested in the asymptotic behaviour of the number of self-intersections of a trajectory of a Lorentz process in a $\mathbb Z^2$-periodic planar domain with strictly convex obstacles and with finite horizon. We give precise estimates for its expectation and its variance. As a consequence, we establish the almost sure convergence of the self-intersections with a suitable normalization.
Citation: Françoise Pène. Self-intersections of trajectories of the Lorentz process. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4781-4806. doi: 10.3934/dcds.2014.34.4781
References:
[1]

E. Bolthausen, A central limit theorem for two-dimensional random walks in random sceneries,, Ann. Probab., 17 (1989), 108.  doi: 10.1214/aop/1176991497.  Google Scholar

[2]

L. A. Bunimovich and Ya. G. Sinai, Markov partitions for dispersed billiards,, Comm. Math. Phys., 78 (): 247.  doi: 10.1007/BF01942372.  Google Scholar

[3]

L. A. Bunimovich and Ya. G. Sinai, Statistical properties of Lorentz gas with periodic configuration of scatterers,, Comm. Math. Phys., 78 (): 479.   Google Scholar

[4]

L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov, Markov partitions for two-dimensional hyperbolic billiards,, Russian Math. Surveys, 45 (1990), 105.  doi: 10.1070/RM1990v045n03ABEH002355.  Google Scholar

[5]

L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov, Statistical properties of two-dimensional hyperbolic billiards,, Russian Math. Surveys, 46 (1991), 47.  doi: 10.1070/RM1991v046n04ABEH002827.  Google Scholar

[6]

X Chen, Random Walk Intersections. Large Deviations and Related Topics,, Math. Surv. and Monog., (2010).  doi: 10.1090/surv/157.  Google Scholar

[7]

N. Chernov and R. Markarian, Chaotic Billiards,, Math. Surv. and Monog., 127 (2006).  doi: 10.1090/surv/127.  Google Scholar

[8]

J.-P. Conze, Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications,, Erg. Th. & Dynam. Syst., 19 (1999), 1233.  doi: 10.1017/S0143385799141701.  Google Scholar

[9]

G. Deligiannidis and S. Utev, Asymptotic variance of the self-intersections of stable random walks,, Sib. Math. J., 52 (2011), 639.  doi: 10.1134/S0037446611040082.  Google Scholar

[10]

D. Dolgopyat, D. Szász and T. Varjú, Recurrence properties of planar Lorentz gas,, Duke Math. J., 142 (2008), 241.  doi: 10.1215/00127094-2008-006.  Google Scholar

[11]

A. Dvoretzky and P. Erdös, Some problems on random walk in space,, Proc. Berkeley Sympos. math. Statist. Probab., 1950 (1951), 353.   Google Scholar

[12]

Y. Guivarc'h and J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov,, Ann. Inst. H. Poincaré (B), 24 (1988), 73.   Google Scholar

[13]

S. V. Nagaev, Some limit theorems for stationary Markov chains,, Theor. Probab. Appl., 2 (1957), 378.   Google Scholar

[14]

S. V. Nagaev, More exact statement of limit theorems for homogeneous Markov chains,, Theor. Probab. Appl., 6 (1961), 62.   Google Scholar

[15]

F. Pène, Applications des propriétés stochastiques de billards dispersifs,, C. R. Acad. des Sci., 330 (2000), 1103.  doi: 10.1016/S0764-4442(00)00318-9.  Google Scholar

[16]

F. Pène, Rates of convergence in the CLT for two-dimensional dispersive billiards,, Comm. Math. Phys., 225 (2002), 91.  doi: 10.1007/s002201000573.  Google Scholar

[17]

F. Pène, Planar Lorentz process in a random scenery,, Ann. Inst. Henri Poincaré, 45 (2009), 818.  doi: 10.1214/08-AIHP191.  Google Scholar

[18]

F. Pène and B. Saussol, Back to balls in billiards,, Comm. Math. Phys., 293 (2010), 837.  doi: 10.1007/s00220-009-0911-4.  Google Scholar

[19]

Ya. G. Sinai, Dynamical systems with elastic reflections,, Russian Math. Surveys, 25 (1970), 141.  doi: 10.1070/RM1970v025n02ABEH003794.  Google Scholar

[20]

D. Szász and T. Varjú, Local limit theorem for the Lorentz process and its recurrence in the plane,, Erg. Th. & Dynam. Syst., 24 (2004), 257.  doi: 10.1017/S0143385703000439.  Google Scholar

[21]

L. -S. Young, Statistical properties of dynamical systems with some hyperbolicity,, Ann. Math., 147 (1998), 585.  doi: 10.2307/120960.  Google Scholar

show all references

References:
[1]

E. Bolthausen, A central limit theorem for two-dimensional random walks in random sceneries,, Ann. Probab., 17 (1989), 108.  doi: 10.1214/aop/1176991497.  Google Scholar

[2]

L. A. Bunimovich and Ya. G. Sinai, Markov partitions for dispersed billiards,, Comm. Math. Phys., 78 (): 247.  doi: 10.1007/BF01942372.  Google Scholar

[3]

L. A. Bunimovich and Ya. G. Sinai, Statistical properties of Lorentz gas with periodic configuration of scatterers,, Comm. Math. Phys., 78 (): 479.   Google Scholar

[4]

L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov, Markov partitions for two-dimensional hyperbolic billiards,, Russian Math. Surveys, 45 (1990), 105.  doi: 10.1070/RM1990v045n03ABEH002355.  Google Scholar

[5]

L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov, Statistical properties of two-dimensional hyperbolic billiards,, Russian Math. Surveys, 46 (1991), 47.  doi: 10.1070/RM1991v046n04ABEH002827.  Google Scholar

[6]

X Chen, Random Walk Intersections. Large Deviations and Related Topics,, Math. Surv. and Monog., (2010).  doi: 10.1090/surv/157.  Google Scholar

[7]

N. Chernov and R. Markarian, Chaotic Billiards,, Math. Surv. and Monog., 127 (2006).  doi: 10.1090/surv/127.  Google Scholar

[8]

J.-P. Conze, Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications,, Erg. Th. & Dynam. Syst., 19 (1999), 1233.  doi: 10.1017/S0143385799141701.  Google Scholar

[9]

G. Deligiannidis and S. Utev, Asymptotic variance of the self-intersections of stable random walks,, Sib. Math. J., 52 (2011), 639.  doi: 10.1134/S0037446611040082.  Google Scholar

[10]

D. Dolgopyat, D. Szász and T. Varjú, Recurrence properties of planar Lorentz gas,, Duke Math. J., 142 (2008), 241.  doi: 10.1215/00127094-2008-006.  Google Scholar

[11]

A. Dvoretzky and P. Erdös, Some problems on random walk in space,, Proc. Berkeley Sympos. math. Statist. Probab., 1950 (1951), 353.   Google Scholar

[12]

Y. Guivarc'h and J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov,, Ann. Inst. H. Poincaré (B), 24 (1988), 73.   Google Scholar

[13]

S. V. Nagaev, Some limit theorems for stationary Markov chains,, Theor. Probab. Appl., 2 (1957), 378.   Google Scholar

[14]

S. V. Nagaev, More exact statement of limit theorems for homogeneous Markov chains,, Theor. Probab. Appl., 6 (1961), 62.   Google Scholar

[15]

F. Pène, Applications des propriétés stochastiques de billards dispersifs,, C. R. Acad. des Sci., 330 (2000), 1103.  doi: 10.1016/S0764-4442(00)00318-9.  Google Scholar

[16]

F. Pène, Rates of convergence in the CLT for two-dimensional dispersive billiards,, Comm. Math. Phys., 225 (2002), 91.  doi: 10.1007/s002201000573.  Google Scholar

[17]

F. Pène, Planar Lorentz process in a random scenery,, Ann. Inst. Henri Poincaré, 45 (2009), 818.  doi: 10.1214/08-AIHP191.  Google Scholar

[18]

F. Pène and B. Saussol, Back to balls in billiards,, Comm. Math. Phys., 293 (2010), 837.  doi: 10.1007/s00220-009-0911-4.  Google Scholar

[19]

Ya. G. Sinai, Dynamical systems with elastic reflections,, Russian Math. Surveys, 25 (1970), 141.  doi: 10.1070/RM1970v025n02ABEH003794.  Google Scholar

[20]

D. Szász and T. Varjú, Local limit theorem for the Lorentz process and its recurrence in the plane,, Erg. Th. & Dynam. Syst., 24 (2004), 257.  doi: 10.1017/S0143385703000439.  Google Scholar

[21]

L. -S. Young, Statistical properties of dynamical systems with some hyperbolicity,, Ann. Math., 147 (1998), 585.  doi: 10.2307/120960.  Google Scholar

[1]

Françoise Pène. Asymptotic of the number of obstacles visited by the planar Lorentz process. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 567-587. doi: 10.3934/dcds.2009.24.567

[2]

Yoon-Sik Cho, Aram Galstyan, P. Jeffrey Brantingham, George Tita. Latent self-exciting point process model for spatial-temporal networks. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1335-1354. doi: 10.3934/dcdsb.2014.19.1335

[3]

Karsten Keller. Permutations and the Kolmogorov-Sinai entropy. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 891-900. doi: 10.3934/dcds.2012.32.891

[4]

Serafin Bautista, Carlos A. Morales. On the intersection of sectional-hyperbolic sets. Journal of Modern Dynamics, 2015, 9: 203-218. doi: 10.3934/jmd.2015.9.203

[5]

Nicolas Bedaride. Entropy of polyhedral billiard. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 89-102. doi: 10.3934/dcds.2007.19.89

[6]

Pavel Bachurin, Konstantin Khanin, Jens Marklof, Alexander Plakhov. Perfect retroreflectors and billiard dynamics. Journal of Modern Dynamics, 2011, 5 (1) : 33-48. doi: 10.3934/jmd.2011.5.33

[7]

Maria Pires De Carvalho. Persistence of Bowen-Ruelle-Sinai measures. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 213-221. doi: 10.3934/dcds.2007.17.213

[8]

David Cowan. A billiard model for a gas of particles with rotation. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 101-109. doi: 10.3934/dcds.2008.22.101

[9]

Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310-318. doi: 10.3934/proc.2001.2001.310

[10]

David Cowan. Rigid particle systems and their billiard models. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 111-130. doi: 10.3934/dcds.2008.22.111

[11]

S. Bautista, C. Morales, M. J. Pacifico. On the intersection of homoclinic classes on singular-hyperbolic sets. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 761-775. doi: 10.3934/dcds.2007.19.761

[12]

Paolo Maremonti. A remark on the Stokes problem in Lorentz spaces. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1323-1342. doi: 10.3934/dcdss.2013.6.1323

[13]

Manuel Gutiérrez. Lorentz geometry technique in nonimaging optics. Conference Publications, 2003, 2003 (Special) : 386-392. doi: 10.3934/proc.2003.2003.386

[14]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[15]

Alexey Glutsyuk, Yury Kudryashov. No planar billiard possesses an open set of quadrilateral trajectories. Journal of Modern Dynamics, 2012, 6 (3) : 287-326. doi: 10.3934/jmd.2012.6.287

[16]

Jianlu Zhang. Suspension of the billiard maps in the Lazutkin's coordinate. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2227-2242. doi: 10.3934/dcds.2017096

[17]

Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665

[18]

Neal Bez, Sanghyuk Lee, Shohei Nakamura, Yoshihiro Sawano. Sharpness of the Brascamp–Lieb inequality in Lorentz spaces. Electronic Research Announcements, 2017, 24: 53-63. doi: 10.3934/era.2017.24.006

[19]

Lisa C. Jeffrey and Frances C. Kirwan. Intersection pairings in moduli spaces of holomorphic bundles on a Riemann surface. Electronic Research Announcements, 1995, 1: 57-71.

[20]

Alberto Bressan, Anders Nordli. The Riemann solver for traffic flow at an intersection with buffer of vanishing size. Networks & Heterogeneous Media, 2017, 12 (2) : 173-189. doi: 10.3934/nhm.2017007

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]