November  2014, 34(11): 4807-4826. doi: 10.3934/dcds.2014.34.4807

Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers

1. 

School of Mathematics and System Sciences, Beijing University of Aeronautics and Astronautics, LIMB of the Ministry of education, Beijing, 100191

2. 

Department of Mathematics, University of Texas-Pan American, Edinburg, TX 78539

3. 

School of Mathematics, Soochow University, Suzhou, Jiangsu 215006, China

Received  December 2013 Revised  February 2014 Published  May 2014

This paper is concerned with the bifurcation of limit cycles from a quadratic reversible Lotka-Volterra system with two centers of genus one under small quadratic perturbations. It shows that the cyclicities of each period annulus and two period annuli of the considered system under small quadratic perturbations are two, respectively. This not only gives at least partially a positive answer to an open conjecture, but also improves the corresponding results in the literature. In addition, we present the configurations of limit cycles of the perturbed system as (2, 0), (1, 1), (1, 0), (0, 2), (0, 1) and (0, 0), where $(i,\, j)$ indicates that the perturbed system has $i$ limit cycles surrounding the positive singularity while it has $j$ limit cycles surrounding the negative one.
Citation: Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807
References:
[1]

C. Chicone and M. Jacobs, Bifurcation of limit cycles from quadratic isochronous,, J. Differential Equations, 91 (1991), 268.  doi: 10.1016/0022-0396(91)90142-V.  Google Scholar

[2]

G. Chen, C. Li, C. Liu and J. Llibre, The cyclicity of period annuli of some classes of reversible quadratic systems,, Discrete Contin. Dyn. Syst., 16 (2006), 157.  doi: 10.3934/dcds.2006.16.157.  Google Scholar

[3]

B. Coll, C. Li and R. Prohens, Quadratic perturbations of a class of quadratic reversible systems with two centers,, Discrete Contin. Dyn. Syst., 24 (2009), 699.  doi: 10.3934/dcds.2009.24.699.  Google Scholar

[4]

F. Dumortier, R. Roussarie and C. Rousseau, Hilbert's 16th problem for quadratic vector fields,, J. Differential Equations, 110 (1994), 86.  doi: 10.1006/jdeq.1994.1061.  Google Scholar

[5]

J. P. Francoise, Successive derivatives of a first return map, application to the study of quadratic vector fields,, Ergodic Theory Dynam. Syst., 16 (1996), 87.  doi: 10.1017/S0143385700008725.  Google Scholar

[6]

L. Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case,, Invent. Math., 143 (2001), 449.  doi: 10.1007/PL00005798.  Google Scholar

[7]

L. Gavrilov and I. D. Iliev, Quadratic perturbations of quadratic codimension-four centers,, J. Differential Equations, 357 (2009), 69.  doi: 10.1016/j.jmaa.2009.04.004.  Google Scholar

[8]

L. Gavrilov and I. D. Iliev, Bifurcations of limit cycles from infinity in quadratic systems,, Canad. J. Math., 54 (2002), 1038.  doi: 10.4153/CJM-2002-038-6.  Google Scholar

[9]

S. Gautier, L. Gavrilov and I. D. Iliev, Perturbations of quadratic center of genus one,, Disc. Contin. Dyn. Sys., 25 (2009), 511.  doi: 10.3934/dcds.2009.25.511.  Google Scholar

[10]

M. Grau, F. Manosas and J. Villadelprat, A chebyshev criterion for Abelian integral,, Trans. Amer. Math. Soc., 363 (2011), 109.  doi: 10.1090/S0002-9947-2010-05007-X.  Google Scholar

[11]

D. Hilbert, Mathematical problems,, Bull. Amer. Math. Soc., 8 (1902), 437.  doi: 10.1090/S0002-9904-1902-00923-3.  Google Scholar

[12]

E. Horozov and I. D. Iliev, On the number of limit cycles in perturbations of quadratic Hamiltonian system,, Proc. London Math. Soc., 69 (1994), 198.  doi: 10.1112/plms/s3-69.1.198.  Google Scholar

[13]

I. D. Iliev, The cyclicity of the period annulus of the quadratic Hamiltonian thiangle,, J. Differential Equations, 128 (1996), 309.  doi: 10.1006/jdeq.1996.0097.  Google Scholar

[14]

I. D. Iliev, Perturbations of quadratic centers,, Bull. Sci. Math., 122 (1998), 107.  doi: 10.1016/S0007-4497(98)80080-8.  Google Scholar

[15]

Y. Ilyashenko and J. Llibre, A restricted version of Hilbert's 16th problem for quadratic vector fields,, Mosc. Math. J., 10 (2010), 317.   Google Scholar

[16]

C. Li and J. Llibre, The cyclicity of period annulus of a quadratic reversible Lotka-Voterra system,, Nonlinearity, 22 (2009), 2971.  doi: 10.1088/0951-7715/22/12/009.  Google Scholar

[17]

C. Li and Z. Zhang, A criterion for determing the monotonicity of ratio of two Ablian integrals,, J. Differential Equations, 124 (1996), 407.  doi: 10.1006/jdeq.1996.0017.  Google Scholar

[18]

I. Petrovskii and E. Landis, On the number of limit cycles of the equation $dy/dx= \frac{P(x,y)}{Q(x,y)}$, where $P$ and $Q$ are polynomials of degree 2,, Matem. Sb., 37 (1955), 209.   Google Scholar

[19]

D. Schlomiuk, Algebric particular integrals, integrability and the problem of the center,, Trans. Amer. Math, 338 (1993), 799.  doi: 10.1090/S0002-9947-1993-1106193-6.  Google Scholar

[20]

Y. Shao and Y. Zhao, The cyclicity and period annulus of a class of quadratic reversible Lotka-Volterra system of genus one,, J. Math. Anal. Appl., 377 (2011), 817.  doi: 10.1016/j.jmaa.2010.11.048.  Google Scholar

[21]

H. Zoladek, Quadratic systems with center and perturbations,, J. Differential Equations, 109 (1994), 223.  doi: 10.1006/jdeq.1994.1049.  Google Scholar

show all references

References:
[1]

C. Chicone and M. Jacobs, Bifurcation of limit cycles from quadratic isochronous,, J. Differential Equations, 91 (1991), 268.  doi: 10.1016/0022-0396(91)90142-V.  Google Scholar

[2]

G. Chen, C. Li, C. Liu and J. Llibre, The cyclicity of period annuli of some classes of reversible quadratic systems,, Discrete Contin. Dyn. Syst., 16 (2006), 157.  doi: 10.3934/dcds.2006.16.157.  Google Scholar

[3]

B. Coll, C. Li and R. Prohens, Quadratic perturbations of a class of quadratic reversible systems with two centers,, Discrete Contin. Dyn. Syst., 24 (2009), 699.  doi: 10.3934/dcds.2009.24.699.  Google Scholar

[4]

F. Dumortier, R. Roussarie and C. Rousseau, Hilbert's 16th problem for quadratic vector fields,, J. Differential Equations, 110 (1994), 86.  doi: 10.1006/jdeq.1994.1061.  Google Scholar

[5]

J. P. Francoise, Successive derivatives of a first return map, application to the study of quadratic vector fields,, Ergodic Theory Dynam. Syst., 16 (1996), 87.  doi: 10.1017/S0143385700008725.  Google Scholar

[6]

L. Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case,, Invent. Math., 143 (2001), 449.  doi: 10.1007/PL00005798.  Google Scholar

[7]

L. Gavrilov and I. D. Iliev, Quadratic perturbations of quadratic codimension-four centers,, J. Differential Equations, 357 (2009), 69.  doi: 10.1016/j.jmaa.2009.04.004.  Google Scholar

[8]

L. Gavrilov and I. D. Iliev, Bifurcations of limit cycles from infinity in quadratic systems,, Canad. J. Math., 54 (2002), 1038.  doi: 10.4153/CJM-2002-038-6.  Google Scholar

[9]

S. Gautier, L. Gavrilov and I. D. Iliev, Perturbations of quadratic center of genus one,, Disc. Contin. Dyn. Sys., 25 (2009), 511.  doi: 10.3934/dcds.2009.25.511.  Google Scholar

[10]

M. Grau, F. Manosas and J. Villadelprat, A chebyshev criterion for Abelian integral,, Trans. Amer. Math. Soc., 363 (2011), 109.  doi: 10.1090/S0002-9947-2010-05007-X.  Google Scholar

[11]

D. Hilbert, Mathematical problems,, Bull. Amer. Math. Soc., 8 (1902), 437.  doi: 10.1090/S0002-9904-1902-00923-3.  Google Scholar

[12]

E. Horozov and I. D. Iliev, On the number of limit cycles in perturbations of quadratic Hamiltonian system,, Proc. London Math. Soc., 69 (1994), 198.  doi: 10.1112/plms/s3-69.1.198.  Google Scholar

[13]

I. D. Iliev, The cyclicity of the period annulus of the quadratic Hamiltonian thiangle,, J. Differential Equations, 128 (1996), 309.  doi: 10.1006/jdeq.1996.0097.  Google Scholar

[14]

I. D. Iliev, Perturbations of quadratic centers,, Bull. Sci. Math., 122 (1998), 107.  doi: 10.1016/S0007-4497(98)80080-8.  Google Scholar

[15]

Y. Ilyashenko and J. Llibre, A restricted version of Hilbert's 16th problem for quadratic vector fields,, Mosc. Math. J., 10 (2010), 317.   Google Scholar

[16]

C. Li and J. Llibre, The cyclicity of period annulus of a quadratic reversible Lotka-Voterra system,, Nonlinearity, 22 (2009), 2971.  doi: 10.1088/0951-7715/22/12/009.  Google Scholar

[17]

C. Li and Z. Zhang, A criterion for determing the monotonicity of ratio of two Ablian integrals,, J. Differential Equations, 124 (1996), 407.  doi: 10.1006/jdeq.1996.0017.  Google Scholar

[18]

I. Petrovskii and E. Landis, On the number of limit cycles of the equation $dy/dx= \frac{P(x,y)}{Q(x,y)}$, where $P$ and $Q$ are polynomials of degree 2,, Matem. Sb., 37 (1955), 209.   Google Scholar

[19]

D. Schlomiuk, Algebric particular integrals, integrability and the problem of the center,, Trans. Amer. Math, 338 (1993), 799.  doi: 10.1090/S0002-9947-1993-1106193-6.  Google Scholar

[20]

Y. Shao and Y. Zhao, The cyclicity and period annulus of a class of quadratic reversible Lotka-Volterra system of genus one,, J. Math. Anal. Appl., 377 (2011), 817.  doi: 10.1016/j.jmaa.2010.11.048.  Google Scholar

[21]

H. Zoladek, Quadratic systems with center and perturbations,, J. Differential Equations, 109 (1994), 223.  doi: 10.1006/jdeq.1994.1049.  Google Scholar

[1]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[2]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[3]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[6]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[7]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[8]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[9]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[10]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[11]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[12]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[13]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[14]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[15]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[16]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[17]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[18]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[19]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[20]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]