November  2014, 34(11): 4807-4826. doi: 10.3934/dcds.2014.34.4807

Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers

1. 

School of Mathematics and System Sciences, Beijing University of Aeronautics and Astronautics, LIMB of the Ministry of education, Beijing, 100191

2. 

Department of Mathematics, University of Texas-Pan American, Edinburg, TX 78539

3. 

School of Mathematics, Soochow University, Suzhou, Jiangsu 215006, China

Received  December 2013 Revised  February 2014 Published  May 2014

This paper is concerned with the bifurcation of limit cycles from a quadratic reversible Lotka-Volterra system with two centers of genus one under small quadratic perturbations. It shows that the cyclicities of each period annulus and two period annuli of the considered system under small quadratic perturbations are two, respectively. This not only gives at least partially a positive answer to an open conjecture, but also improves the corresponding results in the literature. In addition, we present the configurations of limit cycles of the perturbed system as (2, 0), (1, 1), (1, 0), (0, 2), (0, 1) and (0, 0), where $(i,\, j)$ indicates that the perturbed system has $i$ limit cycles surrounding the positive singularity while it has $j$ limit cycles surrounding the negative one.
Citation: Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807
References:
[1]

C. Chicone and M. Jacobs, Bifurcation of limit cycles from quadratic isochronous,, J. Differential Equations, 91 (1991), 268.  doi: 10.1016/0022-0396(91)90142-V.  Google Scholar

[2]

G. Chen, C. Li, C. Liu and J. Llibre, The cyclicity of period annuli of some classes of reversible quadratic systems,, Discrete Contin. Dyn. Syst., 16 (2006), 157.  doi: 10.3934/dcds.2006.16.157.  Google Scholar

[3]

B. Coll, C. Li and R. Prohens, Quadratic perturbations of a class of quadratic reversible systems with two centers,, Discrete Contin. Dyn. Syst., 24 (2009), 699.  doi: 10.3934/dcds.2009.24.699.  Google Scholar

[4]

F. Dumortier, R. Roussarie and C. Rousseau, Hilbert's 16th problem for quadratic vector fields,, J. Differential Equations, 110 (1994), 86.  doi: 10.1006/jdeq.1994.1061.  Google Scholar

[5]

J. P. Francoise, Successive derivatives of a first return map, application to the study of quadratic vector fields,, Ergodic Theory Dynam. Syst., 16 (1996), 87.  doi: 10.1017/S0143385700008725.  Google Scholar

[6]

L. Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case,, Invent. Math., 143 (2001), 449.  doi: 10.1007/PL00005798.  Google Scholar

[7]

L. Gavrilov and I. D. Iliev, Quadratic perturbations of quadratic codimension-four centers,, J. Differential Equations, 357 (2009), 69.  doi: 10.1016/j.jmaa.2009.04.004.  Google Scholar

[8]

L. Gavrilov and I. D. Iliev, Bifurcations of limit cycles from infinity in quadratic systems,, Canad. J. Math., 54 (2002), 1038.  doi: 10.4153/CJM-2002-038-6.  Google Scholar

[9]

S. Gautier, L. Gavrilov and I. D. Iliev, Perturbations of quadratic center of genus one,, Disc. Contin. Dyn. Sys., 25 (2009), 511.  doi: 10.3934/dcds.2009.25.511.  Google Scholar

[10]

M. Grau, F. Manosas and J. Villadelprat, A chebyshev criterion for Abelian integral,, Trans. Amer. Math. Soc., 363 (2011), 109.  doi: 10.1090/S0002-9947-2010-05007-X.  Google Scholar

[11]

D. Hilbert, Mathematical problems,, Bull. Amer. Math. Soc., 8 (1902), 437.  doi: 10.1090/S0002-9904-1902-00923-3.  Google Scholar

[12]

E. Horozov and I. D. Iliev, On the number of limit cycles in perturbations of quadratic Hamiltonian system,, Proc. London Math. Soc., 69 (1994), 198.  doi: 10.1112/plms/s3-69.1.198.  Google Scholar

[13]

I. D. Iliev, The cyclicity of the period annulus of the quadratic Hamiltonian thiangle,, J. Differential Equations, 128 (1996), 309.  doi: 10.1006/jdeq.1996.0097.  Google Scholar

[14]

I. D. Iliev, Perturbations of quadratic centers,, Bull. Sci. Math., 122 (1998), 107.  doi: 10.1016/S0007-4497(98)80080-8.  Google Scholar

[15]

Y. Ilyashenko and J. Llibre, A restricted version of Hilbert's 16th problem for quadratic vector fields,, Mosc. Math. J., 10 (2010), 317.   Google Scholar

[16]

C. Li and J. Llibre, The cyclicity of period annulus of a quadratic reversible Lotka-Voterra system,, Nonlinearity, 22 (2009), 2971.  doi: 10.1088/0951-7715/22/12/009.  Google Scholar

[17]

C. Li and Z. Zhang, A criterion for determing the monotonicity of ratio of two Ablian integrals,, J. Differential Equations, 124 (1996), 407.  doi: 10.1006/jdeq.1996.0017.  Google Scholar

[18]

I. Petrovskii and E. Landis, On the number of limit cycles of the equation $dy/dx= \frac{P(x,y)}{Q(x,y)}$, where $P$ and $Q$ are polynomials of degree 2,, Matem. Sb., 37 (1955), 209.   Google Scholar

[19]

D. Schlomiuk, Algebric particular integrals, integrability and the problem of the center,, Trans. Amer. Math, 338 (1993), 799.  doi: 10.1090/S0002-9947-1993-1106193-6.  Google Scholar

[20]

Y. Shao and Y. Zhao, The cyclicity and period annulus of a class of quadratic reversible Lotka-Volterra system of genus one,, J. Math. Anal. Appl., 377 (2011), 817.  doi: 10.1016/j.jmaa.2010.11.048.  Google Scholar

[21]

H. Zoladek, Quadratic systems with center and perturbations,, J. Differential Equations, 109 (1994), 223.  doi: 10.1006/jdeq.1994.1049.  Google Scholar

show all references

References:
[1]

C. Chicone and M. Jacobs, Bifurcation of limit cycles from quadratic isochronous,, J. Differential Equations, 91 (1991), 268.  doi: 10.1016/0022-0396(91)90142-V.  Google Scholar

[2]

G. Chen, C. Li, C. Liu and J. Llibre, The cyclicity of period annuli of some classes of reversible quadratic systems,, Discrete Contin. Dyn. Syst., 16 (2006), 157.  doi: 10.3934/dcds.2006.16.157.  Google Scholar

[3]

B. Coll, C. Li and R. Prohens, Quadratic perturbations of a class of quadratic reversible systems with two centers,, Discrete Contin. Dyn. Syst., 24 (2009), 699.  doi: 10.3934/dcds.2009.24.699.  Google Scholar

[4]

F. Dumortier, R. Roussarie and C. Rousseau, Hilbert's 16th problem for quadratic vector fields,, J. Differential Equations, 110 (1994), 86.  doi: 10.1006/jdeq.1994.1061.  Google Scholar

[5]

J. P. Francoise, Successive derivatives of a first return map, application to the study of quadratic vector fields,, Ergodic Theory Dynam. Syst., 16 (1996), 87.  doi: 10.1017/S0143385700008725.  Google Scholar

[6]

L. Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case,, Invent. Math., 143 (2001), 449.  doi: 10.1007/PL00005798.  Google Scholar

[7]

L. Gavrilov and I. D. Iliev, Quadratic perturbations of quadratic codimension-four centers,, J. Differential Equations, 357 (2009), 69.  doi: 10.1016/j.jmaa.2009.04.004.  Google Scholar

[8]

L. Gavrilov and I. D. Iliev, Bifurcations of limit cycles from infinity in quadratic systems,, Canad. J. Math., 54 (2002), 1038.  doi: 10.4153/CJM-2002-038-6.  Google Scholar

[9]

S. Gautier, L. Gavrilov and I. D. Iliev, Perturbations of quadratic center of genus one,, Disc. Contin. Dyn. Sys., 25 (2009), 511.  doi: 10.3934/dcds.2009.25.511.  Google Scholar

[10]

M. Grau, F. Manosas and J. Villadelprat, A chebyshev criterion for Abelian integral,, Trans. Amer. Math. Soc., 363 (2011), 109.  doi: 10.1090/S0002-9947-2010-05007-X.  Google Scholar

[11]

D. Hilbert, Mathematical problems,, Bull. Amer. Math. Soc., 8 (1902), 437.  doi: 10.1090/S0002-9904-1902-00923-3.  Google Scholar

[12]

E. Horozov and I. D. Iliev, On the number of limit cycles in perturbations of quadratic Hamiltonian system,, Proc. London Math. Soc., 69 (1994), 198.  doi: 10.1112/plms/s3-69.1.198.  Google Scholar

[13]

I. D. Iliev, The cyclicity of the period annulus of the quadratic Hamiltonian thiangle,, J. Differential Equations, 128 (1996), 309.  doi: 10.1006/jdeq.1996.0097.  Google Scholar

[14]

I. D. Iliev, Perturbations of quadratic centers,, Bull. Sci. Math., 122 (1998), 107.  doi: 10.1016/S0007-4497(98)80080-8.  Google Scholar

[15]

Y. Ilyashenko and J. Llibre, A restricted version of Hilbert's 16th problem for quadratic vector fields,, Mosc. Math. J., 10 (2010), 317.   Google Scholar

[16]

C. Li and J. Llibre, The cyclicity of period annulus of a quadratic reversible Lotka-Voterra system,, Nonlinearity, 22 (2009), 2971.  doi: 10.1088/0951-7715/22/12/009.  Google Scholar

[17]

C. Li and Z. Zhang, A criterion for determing the monotonicity of ratio of two Ablian integrals,, J. Differential Equations, 124 (1996), 407.  doi: 10.1006/jdeq.1996.0017.  Google Scholar

[18]

I. Petrovskii and E. Landis, On the number of limit cycles of the equation $dy/dx= \frac{P(x,y)}{Q(x,y)}$, where $P$ and $Q$ are polynomials of degree 2,, Matem. Sb., 37 (1955), 209.   Google Scholar

[19]

D. Schlomiuk, Algebric particular integrals, integrability and the problem of the center,, Trans. Amer. Math, 338 (1993), 799.  doi: 10.1090/S0002-9947-1993-1106193-6.  Google Scholar

[20]

Y. Shao and Y. Zhao, The cyclicity and period annulus of a class of quadratic reversible Lotka-Volterra system of genus one,, J. Math. Anal. Appl., 377 (2011), 817.  doi: 10.1016/j.jmaa.2010.11.048.  Google Scholar

[21]

H. Zoladek, Quadratic systems with center and perturbations,, J. Differential Equations, 109 (1994), 223.  doi: 10.1006/jdeq.1994.1049.  Google Scholar

[1]

Linping Peng, Yazhi Lei. The cyclicity of the period annulus of a quadratic reversible system with a hemicycle. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 873-890. doi: 10.3934/dcds.2011.30.873

[2]

Yi Shao, Yulin Zhao. The cyclicity of the period annulus of a class of quadratic reversible system. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1269-1283. doi: 10.3934/cpaa.2012.11.1269

[3]

Iliya D. Iliev, Chengzhi Li, Jiang Yu. Bifurcations of limit cycles in a reversible quadratic system with a center, a saddle and two nodes. Communications on Pure & Applied Analysis, 2010, 9 (3) : 583-610. doi: 10.3934/cpaa.2010.9.583

[4]

G. Chen, C. Li, C. Liu, Jaume Llibre. The cyclicity of period annuli of some classes of reversible quadratic systems. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 157-177. doi: 10.3934/dcds.2006.16.157

[5]

Junmin Yang, Maoan Han. On the number of limit cycles of a cubic Near-Hamiltonian system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 827-840. doi: 10.3934/dcds.2009.24.827

[6]

Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795

[7]

Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846

[8]

Yunming Zhou, Desheng Shang, Tonghua Zhang. Seventeen limit cycles bifurcations of a fifth system. Conference Publications, 2007, 2007 (Special) : 1070-1081. doi: 10.3934/proc.2007.2007.1070

[9]

Maoan Han, Yuhai Wu, Ping Bi. A new cubic system having eleven limit cycles. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 675-686. doi: 10.3934/dcds.2005.12.675

[10]

Yavdat Il'yasov, Nadir Sari. Solutions of minimal period for a Hamiltonian system with a changing sign potential. Communications on Pure & Applied Analysis, 2005, 4 (1) : 175-185. doi: 10.3934/cpaa.2005.4.175

[11]

Jaume Llibre, Dana Schlomiuk. On the limit cycles bifurcating from an ellipse of a quadratic center. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1091-1102. doi: 10.3934/dcds.2015.35.1091

[12]

Jaume Llibre, Claudia Valls. Algebraic limit cycles for quadratic polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2475-2485. doi: 10.3934/dcdsb.2018070

[13]

José Luis Bravo, Manuel Fernández, Ignacio Ojeda, Fernando Sánchez. Uniqueness of limit cycles for quadratic vector fields. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 483-502. doi: 10.3934/dcds.2019020

[14]

Maoan Han, Tonghua Zhang. Some bifurcation methods of finding limit cycles. Mathematical Biosciences & Engineering, 2006, 3 (1) : 67-77. doi: 10.3934/mbe.2006.3.67

[15]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[16]

André Vanderbauwhede. Continuation and bifurcation of multi-symmetric solutions in reversible Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 359-363. doi: 10.3934/dcds.2013.33.359

[17]

P. Yu, M. Han. Twelve limit cycles in a cubic order planar system with $Z_2$- symmetry. Communications on Pure & Applied Analysis, 2004, 3 (3) : 515-526. doi: 10.3934/cpaa.2004.3.515

[18]

Duanzhi Zhang. Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2227-2272. doi: 10.3934/dcds.2015.35.2227

[19]

Magdalena Caubergh, Freddy Dumortier, Robert Roussarie. Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle. Communications on Pure & Applied Analysis, 2007, 6 (1) : 1-21. doi: 10.3934/cpaa.2007.6.1

[20]

Stijn Luca, Freddy Dumortier, Magdalena Caubergh, Robert Roussarie. Detecting alien limit cycles near a Hamiltonian 2-saddle cycle. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1081-1108. doi: 10.3934/dcds.2009.25.1081

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]