November  2014, 34(11): 4855-4874. doi: 10.3934/dcds.2014.34.4855

Substitutions, tiling dynamical systems and minimal self-joinings

1. 

Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 7610001, Israel

Received  September 2013 Revised  March 2014 Published  May 2014

We investigate substitution subshifts and tiling dynamical systems arising from the substitutions (1) $\theta: 0 \rightarrow 001, 1 \rightarrow 11001$ and (2) $\eta: 0 \rightarrow 001, 1 \rightarrow 11100$. We show that the substitution subshifts arising from $\theta$ and $\eta$ have minimal self-joinings and are mildly mixing. We also give a criterion for 1-dimensional tiling systems arising from $\theta$ or $\eta$ to have minimal self-joinings. We apply this to obtain examples of mildly mixing 1-dimensional tiling systems.
Citation: Younghwan Son. Substitutions, tiling dynamical systems and minimal self-joinings. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4855-4874. doi: 10.3934/dcds.2014.34.4855
References:
[1]

D. Berend and C. Radin, Are there chaotic tilings?, Comm. Math. Phys., 152 (1993), 215.  doi: 10.1007/BF02098297.  Google Scholar

[2]

A. Clark and L. Sadun, When size matters: Subshifts and their related tiling spaces,, Ergodic Theory Dynamical Systems, 23 (2003), 1043.  doi: 10.1017/S0143385702001633.  Google Scholar

[3]

F. M. Dekking and M. Keane, Mixing properties of substitutions,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 42 (1978), 23.  doi: 10.1007/BF00534205.  Google Scholar

[4]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,, Princeton University Press, (1981).   Google Scholar

[5]

E. Glasner, Ergodic Theory Via Joinings,, Mathematical Surveys and Monographs, (2003).  doi: 10.1090/surv/101.  Google Scholar

[6]

E. Glasner, B. Host and D. Rudolph, Simple systems and their higher order self-joinings,, Israel J. Math., 78 (1992), 131.  doi: 10.1007/BF02801575.  Google Scholar

[7]

K. Jacobs and M. Keane, $0-1$ Sequences of Toeplitz type,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 13 (1969), 123.  doi: 10.1007/BF00537017.  Google Scholar

[8]

A. del Junco and K. Park, An example of a measure-preserving flow with minimal self-joinings,, J. d'Analyse Math., 42 (): 199.  doi: 10.1007/BF02786879.  Google Scholar

[9]

A. del Junco, M. Rahe and L. Swanson, Chacon's automorphism has minimal self joinins,, J. d'Analyse Math., 37 (1980), 276.  doi: 10.1007/BF02797688.  Google Scholar

[10]

A. del Junco and D. J. Rudolph, A rank one, rigid, simple, prime map,, Ergodic Theory and Dynamical Systems, 7 (1987), 229.  doi: 10.1017/S0143385700003977.  Google Scholar

[11]

S. Kakutani, Strictly ergodic symbolic dynamical systems,, in Proceedings of 6th Berkeley Symposium on Mathematical Statistics and Probability. (eds. L. M. LeCam, (1972), 319.   Google Scholar

[12]

A. B. Katok, Ya. G. Sinai and A. M. Stepin, Theory of dynamical systems and general transformation groups with invariant measure,, Mathematical analysis, 13 (1975), 129.  doi: 10.1007/BF01223133.  Google Scholar

[13]

J. King, The commutant is the weak closure of the powers, for rank one transformations,, Ergodic Theory and Dynamical Systems, 6 (1986), 363.  doi: 10.1017/S0143385700003552.  Google Scholar

[14]

J. King, Ergodic properties where order 4 implies infinite order,, Israel J. Math., 80 (1992), 65.  doi: 10.1007/BF02808154.  Google Scholar

[15]

J. C. Oxtoby, Ergodic sets,, Bull. Amer. Math. Soc., 58 (1952), 116.  doi: 10.1090/S0002-9904-1952-09580-X.  Google Scholar

[16]

K. Petersen, Ergodic Theory,, Cambridge Studies in Advanced Mathematics, (1983).   Google Scholar

[17]

M. Queffélec, Substitution Dynamical Systems - Spectral Analysis,, $2^{nd}$ edition. Lecture Notes in Mathematics, (1294).  doi: 10.1007/978-3-642-11212-6.  Google Scholar

[18]

E. A. Robinson, Symbolic dynamics and tilings of $\mathbbR^d$, Symbolic dynamics and its applications,, in Proc. Sympos. Appl. Math., 60 (2004), 81.  doi: 10.1090/psapm/060/2078847.  Google Scholar

[19]

D. J. Rudolph, An example of a measure preserving map with minimal self-joinings, and applications,, J. d'Analyse Math., 35 (1979), 97.  doi: 10.1007/BF02791063.  Google Scholar

[20]

D. J. Rudolph, Fundamentals of measurable dynamics - Ergodic theory on Lebesque spaces,, Oxford University Press, (1990).   Google Scholar

[21]

V. V. Ryzhikov, Self-joinings of commutative actions with an invariant measure,, Mat. Zametki, 83 (2008), 723.  doi: 10.1134/S0001434608050179.  Google Scholar

[22]

B. Solomyak, Dynamics of self-similar tilings,, Ergodic Theory and Dynamical Systems, 17 (1997), 695.  doi: 10.1017/S0143385797084988.  Google Scholar

show all references

References:
[1]

D. Berend and C. Radin, Are there chaotic tilings?, Comm. Math. Phys., 152 (1993), 215.  doi: 10.1007/BF02098297.  Google Scholar

[2]

A. Clark and L. Sadun, When size matters: Subshifts and their related tiling spaces,, Ergodic Theory Dynamical Systems, 23 (2003), 1043.  doi: 10.1017/S0143385702001633.  Google Scholar

[3]

F. M. Dekking and M. Keane, Mixing properties of substitutions,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 42 (1978), 23.  doi: 10.1007/BF00534205.  Google Scholar

[4]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,, Princeton University Press, (1981).   Google Scholar

[5]

E. Glasner, Ergodic Theory Via Joinings,, Mathematical Surveys and Monographs, (2003).  doi: 10.1090/surv/101.  Google Scholar

[6]

E. Glasner, B. Host and D. Rudolph, Simple systems and their higher order self-joinings,, Israel J. Math., 78 (1992), 131.  doi: 10.1007/BF02801575.  Google Scholar

[7]

K. Jacobs and M. Keane, $0-1$ Sequences of Toeplitz type,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 13 (1969), 123.  doi: 10.1007/BF00537017.  Google Scholar

[8]

A. del Junco and K. Park, An example of a measure-preserving flow with minimal self-joinings,, J. d'Analyse Math., 42 (): 199.  doi: 10.1007/BF02786879.  Google Scholar

[9]

A. del Junco, M. Rahe and L. Swanson, Chacon's automorphism has minimal self joinins,, J. d'Analyse Math., 37 (1980), 276.  doi: 10.1007/BF02797688.  Google Scholar

[10]

A. del Junco and D. J. Rudolph, A rank one, rigid, simple, prime map,, Ergodic Theory and Dynamical Systems, 7 (1987), 229.  doi: 10.1017/S0143385700003977.  Google Scholar

[11]

S. Kakutani, Strictly ergodic symbolic dynamical systems,, in Proceedings of 6th Berkeley Symposium on Mathematical Statistics and Probability. (eds. L. M. LeCam, (1972), 319.   Google Scholar

[12]

A. B. Katok, Ya. G. Sinai and A. M. Stepin, Theory of dynamical systems and general transformation groups with invariant measure,, Mathematical analysis, 13 (1975), 129.  doi: 10.1007/BF01223133.  Google Scholar

[13]

J. King, The commutant is the weak closure of the powers, for rank one transformations,, Ergodic Theory and Dynamical Systems, 6 (1986), 363.  doi: 10.1017/S0143385700003552.  Google Scholar

[14]

J. King, Ergodic properties where order 4 implies infinite order,, Israel J. Math., 80 (1992), 65.  doi: 10.1007/BF02808154.  Google Scholar

[15]

J. C. Oxtoby, Ergodic sets,, Bull. Amer. Math. Soc., 58 (1952), 116.  doi: 10.1090/S0002-9904-1952-09580-X.  Google Scholar

[16]

K. Petersen, Ergodic Theory,, Cambridge Studies in Advanced Mathematics, (1983).   Google Scholar

[17]

M. Queffélec, Substitution Dynamical Systems - Spectral Analysis,, $2^{nd}$ edition. Lecture Notes in Mathematics, (1294).  doi: 10.1007/978-3-642-11212-6.  Google Scholar

[18]

E. A. Robinson, Symbolic dynamics and tilings of $\mathbbR^d$, Symbolic dynamics and its applications,, in Proc. Sympos. Appl. Math., 60 (2004), 81.  doi: 10.1090/psapm/060/2078847.  Google Scholar

[19]

D. J. Rudolph, An example of a measure preserving map with minimal self-joinings, and applications,, J. d'Analyse Math., 35 (1979), 97.  doi: 10.1007/BF02791063.  Google Scholar

[20]

D. J. Rudolph, Fundamentals of measurable dynamics - Ergodic theory on Lebesque spaces,, Oxford University Press, (1990).   Google Scholar

[21]

V. V. Ryzhikov, Self-joinings of commutative actions with an invariant measure,, Mat. Zametki, 83 (2008), 723.  doi: 10.1134/S0001434608050179.  Google Scholar

[22]

B. Solomyak, Dynamics of self-similar tilings,, Ergodic Theory and Dynamical Systems, 17 (1997), 695.  doi: 10.1017/S0143385797084988.  Google Scholar

[1]

Arnaud Goullet, Ian Glasgow, Nadine Aubry. Dynamics of microfluidic mixing using time pulsing. Conference Publications, 2005, 2005 (Special) : 327-336. doi: 10.3934/proc.2005.2005.327

[2]

Matúš Dirbák. Minimal skew products with hypertransitive or mixing properties. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1657-1674. doi: 10.3934/dcds.2012.32.1657

[3]

Krzysztof Frączek, M. Lemańczyk, E. Lesigne. Mild mixing property for special flows under piecewise constant functions. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 691-710. doi: 10.3934/dcds.2007.19.691

[4]

Jean René Chazottes, F. Durand. Local rates of Poincaré recurrence for rotations and weak mixing. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 175-183. doi: 10.3934/dcds.2005.12.175

[5]

Oliver Knill. Singular continuous spectrum and quantitative rates of weak mixing. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 33-42. doi: 10.3934/dcds.1998.4.33

[6]

Krzysztof Frączek, Leonid Polterovich. Growth and mixing. Journal of Modern Dynamics, 2008, 2 (2) : 315-338. doi: 10.3934/jmd.2008.2.315

[7]

Krzysztof Frączek, Mariusz Lemańczyk. Ratner's property and mild mixing for special flows over two-dimensional rotations. Journal of Modern Dynamics, 2010, 4 (4) : 609-635. doi: 10.3934/jmd.2010.4.609

[8]

Anthony Quas, Terry Soo. Weak mixing suspension flows over shifts of finite type are universal. Journal of Modern Dynamics, 2012, 6 (4) : 427-449. doi: 10.3934/jmd.2012.6.427

[9]

Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. Journal of Modern Dynamics, 2009, 3 (1) : 35-49. doi: 10.3934/jmd.2009.3.35

[10]

David Ralston. Heaviness in symbolic dynamics: Substitution and Sturmian systems. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 287-300. doi: 10.3934/dcdss.2009.2.287

[11]

Lluís Alsedà, David Juher, Pere Mumbrú. Minimal dynamics for tree maps. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 511-541. doi: 10.3934/dcds.2008.20.511

[12]

Rui Pacheco, Helder Vilarinho. Statistical stability for multi-substitution tiling spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4579-4594. doi: 10.3934/dcds.2013.33.4579

[13]

Marcy Barge, Sonja Štimac, R. F. Williams. Pure discrete spectrum in substitution tiling spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 579-597. doi: 10.3934/dcds.2013.33.579

[14]

Lidong Wang, Xiang Wang, Fengchun Lei, Heng Liu. Mixing invariant extremal distributional chaos. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6533-6538. doi: 10.3934/dcds.2016082

[15]

A. Crannell. A chaotic, non-mixing subshift. Conference Publications, 1998, 1998 (Special) : 195-202. doi: 10.3934/proc.1998.1998.195

[16]

Zhi Lin, Katarína Boďová, Charles R. Doering. Models & measures of mixing & effective diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 259-274. doi: 10.3934/dcds.2010.28.259

[17]

Marcy Barge. Pure discrete spectrum for a class of one-dimensional substitution tiling systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1159-1173. doi: 10.3934/dcds.2016.36.1159

[18]

Jeanette Olli. Endomorphisms of Sturmian systems and the discrete chair substitution tiling system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4173-4186. doi: 10.3934/dcds.2013.33.4173

[19]

Daniel Coronel, Andrés Navas, Mario Ponce. On bounded cocycles of isometries over minimal dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 45-74. doi: 10.3934/jmd.2013.7.45

[20]

Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]