• Previous Article
    On effects of sampling radius for the nonlocal Patlak-Keller-Segel chemotaxis model
  • DCDS Home
  • This Issue
  • Next Article
    The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces
November  2014, 34(11): 4947-4966. doi: 10.3934/dcds.2014.34.4947

Liouville type theorem for nonlinear elliptic equation with general nonlinearity

1. 

The Center for China's Overseas Interests, Shenzhen University, Shenzhen Guangdong, 518060, China

Received  September 2013 Revised  December 2013 Published  May 2014

In this paper, we study the nonexistence of positive solutions for the following elliptic equation $$ \left\{ \begin{array}{ll} \displaystyle -\Delta u=f(u) & in \quad \mathbb{R}_+^N, \displaystyle \\ \frac{\partial u}{\partial \nu}=g(u) & on \quad \partial \mathbb{R}_+^N \end{array} \right. $$ and elliptic system $$ \left\{ \begin{array}{ll} \displaystyle -\Delta u_1=f_1(u_1,u_2) &in \quad \mathbb{R}_+^N, \\ \\-\Delta u_2=f_2(u_1,u_2) & in\quad \mathbb{R}_+^N, \\ \displaystyle \\ \frac{\partial u_1}{\partial \nu}=g_1(u_1,u_2),\quad \frac{\partial u_2}{\partial \nu}=g_2(u_1,u_2) & on \quad \partial \mathbb{R}_+^N. \end{array} \right. $$ We will prove that these problems possess no positive solutions under some assumptions on nonlinear terms. The main technique we use is the moving plane method in an integral form.
Citation: Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947
References:
[1]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8. Google Scholar

[2]

W. Chen and C. Li, An integral system and the Lane-Emdem conjecture,, Disc. Cont. Dyn. Sys., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167. Google Scholar

[3]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, Acta Mathematica Scientia, 29 (2009), 949. doi: 10.1016/S0252-9602(09)60079-5. Google Scholar

[4]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations,, AIMS Book Series, (2010). Google Scholar

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Discrete Contin. Dyn. Syst., 30 (2011), 1083. doi: 10.3934/dcds.2011.30.1083. Google Scholar

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure and Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. P.D.E., 30 (2005), 59. doi: 10.1081/PDE-200044445. Google Scholar

[8]

M. Chipot, M. Chlebik, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $\mathbb R_+^n$ with a nonlinear boundary condition,, J. Math. Anal. Appl., 223 (1998), 429. doi: 10.1006/jmaa.1998.5958. Google Scholar

[9]

L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains,, Rev. Mat. Iberoamericana, 20 (2004), 67. Google Scholar

[10]

D. G. De Figueiredo and P. L. Felmer, A Liouville type theorem for Elliptic systems,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387. Google Scholar

[11]

D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equation,, J. Math. Pures. Appl., 61 (1982), 41. Google Scholar

[12]

B. Gidas and J. Spruk, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. P.D.E., 6 (1981), 883. doi: 10.1002/cpa.3160340406. Google Scholar

[13]

B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via maximum principle,, Commun. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125. Google Scholar

[14]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbb R^N$,, Journal of Differential Equations, 225 (2006), 685. doi: 10.1016/j.jde.2005.10.016. Google Scholar

[15]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbb R^N$,, Comm. P.D.E., 33 (2008), 263. doi: 10.1080/03605300701257476. Google Scholar

[16]

Y. Guo and J. Liu, Liouville-type theorems for polyharmonic equations in $\mathbb R^N$ and in $\mathbb R^N_+$,, Proceedings of the Royal Society of Edinburgh, 138 (2008), 339. doi: 10.1017/S0308210506000394. Google Scholar

[17]

F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry,, Ann. Inst. H. Poincare Anal. Non Lineaire, 26 (2009), 1. doi: 10.1016/j.anihpc.2007.03.006. Google Scholar

[18]

B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition,, Differential Integral Equations, 7 (1994), 301. Google Scholar

[19]

B. Hu and H. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition,, Trans. Amer. Math. Soc., 346 (1994), 117. doi: 10.1090/S0002-9947-1994-1270664-3. Google Scholar

[20]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661. doi: 10.1090/S0002-9939-05-08411-X. Google Scholar

[21]

C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049. doi: 10.1137/080712301. Google Scholar

[22]

Y. Li and L. Zhang, Liouville-type theorems and harnack-type inequalities for semilinear elliptic equations,, Journal d'Analyse Mathématique, 90 (2003), 27. doi: 10.1007/BF02786551. Google Scholar

[23]

Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383. doi: 10.1215/S0012-7094-95-08016-8. Google Scholar

[24]

Y. Lou and M. Zhu, Classifications of nonnegative solutions to some elliptic problems,, Differential Integral Equations, 12 (1999), 601. Google Scholar

[25]

L. Ma and D. Chen, A Liouville type theorem for an integral system,, Comm. Pure and Appl, 5 (2006), 855. doi: 10.3934/cpaa.2006.5.855. Google Scholar

[26]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances in Mathematics, 226 (2011), 2676. doi: 10.1016/j.aim.2010.07.020. Google Scholar

[27]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Ration. Mech. Anal., 195 (2010), 455. doi: 10.1007/s00205-008-0208-3. Google Scholar

[28]

E. Mitidieri, Nonexistence of positive solutions of semilinear systems in $ R^N$,, Diff. Int. Eq., 9 (1996), 465. Google Scholar

[29]

B. Ou, Positive harmonic functions on the upper half space satisfying a nonlinear boundary condition,, Differential Integral Equations, 9 (1996), 1157. Google Scholar

[30]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system,, Diff. Int. Eq., 9 (1996), 635. Google Scholar

[31]

J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden system,, Atti Sem. Mat. Fis. Univ. Modena. Sippl., 46 (1998), 369. Google Scholar

[32]

J. Serrin and H. Zou, Existence of positive entire solutions of elliptic Hamiltonian systems,, Comm. P.D.E., 23 (1998), 577. doi: 10.1080/03605309808821356. Google Scholar

[33]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions,, Advances in Mathematics, 221 (2009), 1409. doi: 10.1016/j.aim.2009.02.014. Google Scholar

[34]

S. Terracini, Symmetry properties of positives solutions to some elliptic equations with nonlinear boundary conditions,, Diff. Int. Eq., 8 (1995), 1911. Google Scholar

[35]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent,, Adv. Diff. Eq., 1 (1996), 241. Google Scholar

[36]

X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var., 46 (2013), 75. doi: 10.1007/s00526-011-0474-z. Google Scholar

[37]

X. Yu, Liouville Type Theorems for Singular Integral Equations and Integral Systems,, preprint., (). Google Scholar

[38]

X. Yu, Liouville type theorem in the Heisenberg group with general nonlinearity,, Journal of Differential Equations, 254 (2013), 2173. doi: 10.1016/j.jde.2012.11.021. Google Scholar

show all references

References:
[1]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8. Google Scholar

[2]

W. Chen and C. Li, An integral system and the Lane-Emdem conjecture,, Disc. Cont. Dyn. Sys., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167. Google Scholar

[3]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, Acta Mathematica Scientia, 29 (2009), 949. doi: 10.1016/S0252-9602(09)60079-5. Google Scholar

[4]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations,, AIMS Book Series, (2010). Google Scholar

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Discrete Contin. Dyn. Syst., 30 (2011), 1083. doi: 10.3934/dcds.2011.30.1083. Google Scholar

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure and Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. P.D.E., 30 (2005), 59. doi: 10.1081/PDE-200044445. Google Scholar

[8]

M. Chipot, M. Chlebik, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $\mathbb R_+^n$ with a nonlinear boundary condition,, J. Math. Anal. Appl., 223 (1998), 429. doi: 10.1006/jmaa.1998.5958. Google Scholar

[9]

L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains,, Rev. Mat. Iberoamericana, 20 (2004), 67. Google Scholar

[10]

D. G. De Figueiredo and P. L. Felmer, A Liouville type theorem for Elliptic systems,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387. Google Scholar

[11]

D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equation,, J. Math. Pures. Appl., 61 (1982), 41. Google Scholar

[12]

B. Gidas and J. Spruk, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. P.D.E., 6 (1981), 883. doi: 10.1002/cpa.3160340406. Google Scholar

[13]

B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via maximum principle,, Commun. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125. Google Scholar

[14]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbb R^N$,, Journal of Differential Equations, 225 (2006), 685. doi: 10.1016/j.jde.2005.10.016. Google Scholar

[15]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbb R^N$,, Comm. P.D.E., 33 (2008), 263. doi: 10.1080/03605300701257476. Google Scholar

[16]

Y. Guo and J. Liu, Liouville-type theorems for polyharmonic equations in $\mathbb R^N$ and in $\mathbb R^N_+$,, Proceedings of the Royal Society of Edinburgh, 138 (2008), 339. doi: 10.1017/S0308210506000394. Google Scholar

[17]

F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry,, Ann. Inst. H. Poincare Anal. Non Lineaire, 26 (2009), 1. doi: 10.1016/j.anihpc.2007.03.006. Google Scholar

[18]

B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition,, Differential Integral Equations, 7 (1994), 301. Google Scholar

[19]

B. Hu and H. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition,, Trans. Amer. Math. Soc., 346 (1994), 117. doi: 10.1090/S0002-9947-1994-1270664-3. Google Scholar

[20]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661. doi: 10.1090/S0002-9939-05-08411-X. Google Scholar

[21]

C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049. doi: 10.1137/080712301. Google Scholar

[22]

Y. Li and L. Zhang, Liouville-type theorems and harnack-type inequalities for semilinear elliptic equations,, Journal d'Analyse Mathématique, 90 (2003), 27. doi: 10.1007/BF02786551. Google Scholar

[23]

Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383. doi: 10.1215/S0012-7094-95-08016-8. Google Scholar

[24]

Y. Lou and M. Zhu, Classifications of nonnegative solutions to some elliptic problems,, Differential Integral Equations, 12 (1999), 601. Google Scholar

[25]

L. Ma and D. Chen, A Liouville type theorem for an integral system,, Comm. Pure and Appl, 5 (2006), 855. doi: 10.3934/cpaa.2006.5.855. Google Scholar

[26]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances in Mathematics, 226 (2011), 2676. doi: 10.1016/j.aim.2010.07.020. Google Scholar

[27]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Ration. Mech. Anal., 195 (2010), 455. doi: 10.1007/s00205-008-0208-3. Google Scholar

[28]

E. Mitidieri, Nonexistence of positive solutions of semilinear systems in $ R^N$,, Diff. Int. Eq., 9 (1996), 465. Google Scholar

[29]

B. Ou, Positive harmonic functions on the upper half space satisfying a nonlinear boundary condition,, Differential Integral Equations, 9 (1996), 1157. Google Scholar

[30]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system,, Diff. Int. Eq., 9 (1996), 635. Google Scholar

[31]

J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden system,, Atti Sem. Mat. Fis. Univ. Modena. Sippl., 46 (1998), 369. Google Scholar

[32]

J. Serrin and H. Zou, Existence of positive entire solutions of elliptic Hamiltonian systems,, Comm. P.D.E., 23 (1998), 577. doi: 10.1080/03605309808821356. Google Scholar

[33]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions,, Advances in Mathematics, 221 (2009), 1409. doi: 10.1016/j.aim.2009.02.014. Google Scholar

[34]

S. Terracini, Symmetry properties of positives solutions to some elliptic equations with nonlinear boundary conditions,, Diff. Int. Eq., 8 (1995), 1911. Google Scholar

[35]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent,, Adv. Diff. Eq., 1 (1996), 241. Google Scholar

[36]

X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var., 46 (2013), 75. doi: 10.1007/s00526-011-0474-z. Google Scholar

[37]

X. Yu, Liouville Type Theorems for Singular Integral Equations and Integral Systems,, preprint., (). Google Scholar

[38]

X. Yu, Liouville type theorem in the Heisenberg group with general nonlinearity,, Journal of Differential Equations, 254 (2013), 2173. doi: 10.1016/j.jde.2012.11.021. Google Scholar

[1]

Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549

[2]

Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317

[3]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[4]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[5]

Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure & Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807

[6]

Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201

[7]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[8]

Anh Tuan Duong, Quoc Hung Phan. A Liouville-type theorem for cooperative parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 823-833. doi: 10.3934/dcds.2018035

[9]

Shigeru Sakaguchi. A Liouville-type theorem for some Weingarten hypersurfaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 887-895. doi: 10.3934/dcdss.2011.4.887

[10]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[11]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[12]

Xinjing Wang, Pengcheng Niu, Xuewei Cui. A Liouville type theorem to an extension problem relating to the Heisenberg group. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2379-2394. doi: 10.3934/cpaa.2018113

[13]

Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511

[14]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[15]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[16]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[17]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[18]

Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865

[19]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[20]

Chiun-Chuan Chen, Li-Chang Hung. An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1503-1521. doi: 10.3934/dcdsb.2018054

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]