• Previous Article
    On effects of sampling radius for the nonlocal Patlak-Keller-Segel chemotaxis model
  • DCDS Home
  • This Issue
  • Next Article
    The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces
November  2014, 34(11): 4947-4966. doi: 10.3934/dcds.2014.34.4947

Liouville type theorem for nonlinear elliptic equation with general nonlinearity

1. 

The Center for China's Overseas Interests, Shenzhen University, Shenzhen Guangdong, 518060, China

Received  September 2013 Revised  December 2013 Published  May 2014

In this paper, we study the nonexistence of positive solutions for the following elliptic equation $$ \left\{ \begin{array}{ll} \displaystyle -\Delta u=f(u) & in \quad \mathbb{R}_+^N, \displaystyle \\ \frac{\partial u}{\partial \nu}=g(u) & on \quad \partial \mathbb{R}_+^N \end{array} \right. $$ and elliptic system $$ \left\{ \begin{array}{ll} \displaystyle -\Delta u_1=f_1(u_1,u_2) &in \quad \mathbb{R}_+^N, \\ \\-\Delta u_2=f_2(u_1,u_2) & in\quad \mathbb{R}_+^N, \\ \displaystyle \\ \frac{\partial u_1}{\partial \nu}=g_1(u_1,u_2),\quad \frac{\partial u_2}{\partial \nu}=g_2(u_1,u_2) & on \quad \partial \mathbb{R}_+^N. \end{array} \right. $$ We will prove that these problems possess no positive solutions under some assumptions on nonlinear terms. The main technique we use is the moving plane method in an integral form.
Citation: Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947
References:
[1]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8.

[2]

W. Chen and C. Li, An integral system and the Lane-Emdem conjecture,, Disc. Cont. Dyn. Sys., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167.

[3]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, Acta Mathematica Scientia, 29 (2009), 949. doi: 10.1016/S0252-9602(09)60079-5.

[4]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations,, AIMS Book Series, (2010).

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Discrete Contin. Dyn. Syst., 30 (2011), 1083. doi: 10.3934/dcds.2011.30.1083.

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure and Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116.

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. P.D.E., 30 (2005), 59. doi: 10.1081/PDE-200044445.

[8]

M. Chipot, M. Chlebik, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $\mathbb R_+^n$ with a nonlinear boundary condition,, J. Math. Anal. Appl., 223 (1998), 429. doi: 10.1006/jmaa.1998.5958.

[9]

L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains,, Rev. Mat. Iberoamericana, 20 (2004), 67.

[10]

D. G. De Figueiredo and P. L. Felmer, A Liouville type theorem for Elliptic systems,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387.

[11]

D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equation,, J. Math. Pures. Appl., 61 (1982), 41.

[12]

B. Gidas and J. Spruk, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. P.D.E., 6 (1981), 883. doi: 10.1002/cpa.3160340406.

[13]

B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via maximum principle,, Commun. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125.

[14]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbb R^N$,, Journal of Differential Equations, 225 (2006), 685. doi: 10.1016/j.jde.2005.10.016.

[15]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbb R^N$,, Comm. P.D.E., 33 (2008), 263. doi: 10.1080/03605300701257476.

[16]

Y. Guo and J. Liu, Liouville-type theorems for polyharmonic equations in $\mathbb R^N$ and in $\mathbb R^N_+$,, Proceedings of the Royal Society of Edinburgh, 138 (2008), 339. doi: 10.1017/S0308210506000394.

[17]

F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry,, Ann. Inst. H. Poincare Anal. Non Lineaire, 26 (2009), 1. doi: 10.1016/j.anihpc.2007.03.006.

[18]

B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition,, Differential Integral Equations, 7 (1994), 301.

[19]

B. Hu and H. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition,, Trans. Amer. Math. Soc., 346 (1994), 117. doi: 10.1090/S0002-9947-1994-1270664-3.

[20]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661. doi: 10.1090/S0002-9939-05-08411-X.

[21]

C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049. doi: 10.1137/080712301.

[22]

Y. Li and L. Zhang, Liouville-type theorems and harnack-type inequalities for semilinear elliptic equations,, Journal d'Analyse Mathématique, 90 (2003), 27. doi: 10.1007/BF02786551.

[23]

Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383. doi: 10.1215/S0012-7094-95-08016-8.

[24]

Y. Lou and M. Zhu, Classifications of nonnegative solutions to some elliptic problems,, Differential Integral Equations, 12 (1999), 601.

[25]

L. Ma and D. Chen, A Liouville type theorem for an integral system,, Comm. Pure and Appl, 5 (2006), 855. doi: 10.3934/cpaa.2006.5.855.

[26]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances in Mathematics, 226 (2011), 2676. doi: 10.1016/j.aim.2010.07.020.

[27]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Ration. Mech. Anal., 195 (2010), 455. doi: 10.1007/s00205-008-0208-3.

[28]

E. Mitidieri, Nonexistence of positive solutions of semilinear systems in $ R^N$,, Diff. Int. Eq., 9 (1996), 465.

[29]

B. Ou, Positive harmonic functions on the upper half space satisfying a nonlinear boundary condition,, Differential Integral Equations, 9 (1996), 1157.

[30]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system,, Diff. Int. Eq., 9 (1996), 635.

[31]

J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden system,, Atti Sem. Mat. Fis. Univ. Modena. Sippl., 46 (1998), 369.

[32]

J. Serrin and H. Zou, Existence of positive entire solutions of elliptic Hamiltonian systems,, Comm. P.D.E., 23 (1998), 577. doi: 10.1080/03605309808821356.

[33]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions,, Advances in Mathematics, 221 (2009), 1409. doi: 10.1016/j.aim.2009.02.014.

[34]

S. Terracini, Symmetry properties of positives solutions to some elliptic equations with nonlinear boundary conditions,, Diff. Int. Eq., 8 (1995), 1911.

[35]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent,, Adv. Diff. Eq., 1 (1996), 241.

[36]

X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var., 46 (2013), 75. doi: 10.1007/s00526-011-0474-z.

[37]

X. Yu, Liouville Type Theorems for Singular Integral Equations and Integral Systems,, preprint., ().

[38]

X. Yu, Liouville type theorem in the Heisenberg group with general nonlinearity,, Journal of Differential Equations, 254 (2013), 2173. doi: 10.1016/j.jde.2012.11.021.

show all references

References:
[1]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8.

[2]

W. Chen and C. Li, An integral system and the Lane-Emdem conjecture,, Disc. Cont. Dyn. Sys., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167.

[3]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents,, Acta Mathematica Scientia, 29 (2009), 949. doi: 10.1016/S0252-9602(09)60079-5.

[4]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations,, AIMS Book Series, (2010).

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Discrete Contin. Dyn. Syst., 30 (2011), 1083. doi: 10.3934/dcds.2011.30.1083.

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure and Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116.

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. P.D.E., 30 (2005), 59. doi: 10.1081/PDE-200044445.

[8]

M. Chipot, M. Chlebik, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $\mathbb R_+^n$ with a nonlinear boundary condition,, J. Math. Anal. Appl., 223 (1998), 429. doi: 10.1006/jmaa.1998.5958.

[9]

L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains,, Rev. Mat. Iberoamericana, 20 (2004), 67.

[10]

D. G. De Figueiredo and P. L. Felmer, A Liouville type theorem for Elliptic systems,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387.

[11]

D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equation,, J. Math. Pures. Appl., 61 (1982), 41.

[12]

B. Gidas and J. Spruk, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. P.D.E., 6 (1981), 883. doi: 10.1002/cpa.3160340406.

[13]

B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via maximum principle,, Commun. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125.

[14]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbb R^N$,, Journal of Differential Equations, 225 (2006), 685. doi: 10.1016/j.jde.2005.10.016.

[15]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbb R^N$,, Comm. P.D.E., 33 (2008), 263. doi: 10.1080/03605300701257476.

[16]

Y. Guo and J. Liu, Liouville-type theorems for polyharmonic equations in $\mathbb R^N$ and in $\mathbb R^N_+$,, Proceedings of the Royal Society of Edinburgh, 138 (2008), 339. doi: 10.1017/S0308210506000394.

[17]

F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry,, Ann. Inst. H. Poincare Anal. Non Lineaire, 26 (2009), 1. doi: 10.1016/j.anihpc.2007.03.006.

[18]

B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition,, Differential Integral Equations, 7 (1994), 301.

[19]

B. Hu and H. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition,, Trans. Amer. Math. Soc., 346 (1994), 117. doi: 10.1090/S0002-9947-1994-1270664-3.

[20]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661. doi: 10.1090/S0002-9939-05-08411-X.

[21]

C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049. doi: 10.1137/080712301.

[22]

Y. Li and L. Zhang, Liouville-type theorems and harnack-type inequalities for semilinear elliptic equations,, Journal d'Analyse Mathématique, 90 (2003), 27. doi: 10.1007/BF02786551.

[23]

Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383. doi: 10.1215/S0012-7094-95-08016-8.

[24]

Y. Lou and M. Zhu, Classifications of nonnegative solutions to some elliptic problems,, Differential Integral Equations, 12 (1999), 601.

[25]

L. Ma and D. Chen, A Liouville type theorem for an integral system,, Comm. Pure and Appl, 5 (2006), 855. doi: 10.3934/cpaa.2006.5.855.

[26]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances in Mathematics, 226 (2011), 2676. doi: 10.1016/j.aim.2010.07.020.

[27]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Ration. Mech. Anal., 195 (2010), 455. doi: 10.1007/s00205-008-0208-3.

[28]

E. Mitidieri, Nonexistence of positive solutions of semilinear systems in $ R^N$,, Diff. Int. Eq., 9 (1996), 465.

[29]

B. Ou, Positive harmonic functions on the upper half space satisfying a nonlinear boundary condition,, Differential Integral Equations, 9 (1996), 1157.

[30]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system,, Diff. Int. Eq., 9 (1996), 635.

[31]

J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden system,, Atti Sem. Mat. Fis. Univ. Modena. Sippl., 46 (1998), 369.

[32]

J. Serrin and H. Zou, Existence of positive entire solutions of elliptic Hamiltonian systems,, Comm. P.D.E., 23 (1998), 577. doi: 10.1080/03605309808821356.

[33]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions,, Advances in Mathematics, 221 (2009), 1409. doi: 10.1016/j.aim.2009.02.014.

[34]

S. Terracini, Symmetry properties of positives solutions to some elliptic equations with nonlinear boundary conditions,, Diff. Int. Eq., 8 (1995), 1911.

[35]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent,, Adv. Diff. Eq., 1 (1996), 241.

[36]

X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var., 46 (2013), 75. doi: 10.1007/s00526-011-0474-z.

[37]

X. Yu, Liouville Type Theorems for Singular Integral Equations and Integral Systems,, preprint., ().

[38]

X. Yu, Liouville type theorem in the Heisenberg group with general nonlinearity,, Journal of Differential Equations, 254 (2013), 2173. doi: 10.1016/j.jde.2012.11.021.

[1]

Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549

[2]

Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317

[3]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[4]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[5]

Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure & Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807

[6]

Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201

[7]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[8]

Anh Tuan Duong, Quoc Hung Phan. A Liouville-type theorem for cooperative parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 823-833. doi: 10.3934/dcds.2018035

[9]

Shigeru Sakaguchi. A Liouville-type theorem for some Weingarten hypersurfaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 887-895. doi: 10.3934/dcdss.2011.4.887

[10]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[11]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[12]

Xinjing Wang, Pengcheng Niu, Xuewei Cui. A Liouville type theorem to an extension problem relating to the Heisenberg group. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2379-2394. doi: 10.3934/cpaa.2018113

[13]

Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511

[14]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[15]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[16]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[17]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[18]

Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865

[19]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[20]

Chiun-Chuan Chen, Li-Chang Hung. An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1503-1521. doi: 10.3934/dcdsb.2018054

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]