-
Previous Article
The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces
- DCDS Home
- This Issue
-
Next Article
On effects of sampling radius for the nonlocal Patlak-Keller-Segel chemotaxis model
Liouville type theorem for nonlinear elliptic equation with general nonlinearity
1. | The Center for China's Overseas Interests, Shenzhen University, Shenzhen Guangdong, 518060, China |
References:
[1] |
Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[2] |
Disc. Cont. Dyn. Sys., 24 (2009), 1167-1184.
doi: 10.3934/dcds.2009.24.1167. |
[3] |
Acta Mathematica Scientia, 29 (2009), 949-960.
doi: 10.1016/S0252-9602(09)60079-5. |
[4] |
AIMS Book Series, vol. 4, 2010. |
[5] |
Discrete Contin. Dyn. Syst., 30 (2011), 1083-1093.
doi: 10.3934/dcds.2011.30.1083. |
[6] |
Comm. Pure and Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[7] |
Comm. P.D.E., 30 (2005), 59-65.
doi: 10.1081/PDE-200044445. |
[8] |
J. Math. Anal. Appl., 223 (1998), 429-471.
doi: 10.1006/jmaa.1998.5958. |
[9] |
Rev. Mat. Iberoamericana, 20 (2004), 67-86. |
[10] |
Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387-397. |
[11] |
J. Math. Pures. Appl., 61 (1982), 41-63. |
[12] |
Comm. P.D.E., 6 (1981), 883-901.
doi: 10.1002/cpa.3160340406. |
[13] |
Commun. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[14] |
Journal of Differential Equations, 225 (2006), 685-709.
doi: 10.1016/j.jde.2005.10.016. |
[15] |
Comm. P.D.E., 33 (2008), 263-284.
doi: 10.1080/03605300701257476. |
[16] |
Proceedings of the Royal Society of Edinburgh, 138 (2008), 339-359.
doi: 10.1017/S0308210506000394. |
[17] |
Ann. Inst. H. Poincare Anal. Non Lineaire, 26 (2009), 1-21.
doi: 10.1016/j.anihpc.2007.03.006. |
[18] |
Differential Integral Equations, 7 (1994), 301-313. |
[19] |
Trans. Amer. Math. Soc., 346 (1994), 117-135.
doi: 10.1090/S0002-9947-1994-1270664-3. |
[20] |
Proc. Amer. Math. Soc., 134 (2006), 1661-1670.
doi: 10.1090/S0002-9939-05-08411-X. |
[21] |
SIAM J. Math. Anal., 40 (2008), 1049-1057.
doi: 10.1137/080712301. |
[22] |
Journal d'Analyse Mathématique, 90 (2003), 27-87.
doi: 10.1007/BF02786551. |
[23] |
Duke Math. J., 80 (1995), 383-417.
doi: 10.1215/S0012-7094-95-08016-8. |
[24] |
Differential Integral Equations, 12 (1999), 601-612. |
[25] |
Comm. Pure and Appl, Anal., 5 (2006), 855-859.
doi: 10.3934/cpaa.2006.5.855. |
[26] |
Advances in Mathematics, 226 (2011), 2676-2699.
doi: 10.1016/j.aim.2010.07.020. |
[27] |
Arch. Ration. Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3. |
[28] |
Diff. Int. Eq., 9 (1996), 465-479. |
[29] |
Differential Integral Equations, 9 (1996), 1157-1164. |
[30] |
Diff. Int. Eq., 9 (1996), 635-653. |
[31] |
Atti Sem. Mat. Fis. Univ. Modena. Sippl., 46 (1998), 369-380. Google Scholar |
[32] |
Comm. P.D.E., 23 (1998), 577-599.
doi: 10.1080/03605309808821356. |
[33] |
Advances in Mathematics, 221 (2009), 1409-1427.
doi: 10.1016/j.aim.2009.02.014. |
[34] |
Diff. Int. Eq., 8 (1995), 1911-1922. |
[35] |
Adv. Diff. Eq., 1 (1996), 241-264. |
[36] |
Calc. Var., 46 (2013), 75-95.
doi: 10.1007/s00526-011-0474-z. |
[37] |
X. Yu, Liouville Type Theorems for Singular Integral Equations and Integral Systems,, preprint., (). Google Scholar |
[38] |
Journal of Differential Equations, 254 (2013), 2173-2182.
doi: 10.1016/j.jde.2012.11.021. |
show all references
References:
[1] |
Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[2] |
Disc. Cont. Dyn. Sys., 24 (2009), 1167-1184.
doi: 10.3934/dcds.2009.24.1167. |
[3] |
Acta Mathematica Scientia, 29 (2009), 949-960.
doi: 10.1016/S0252-9602(09)60079-5. |
[4] |
AIMS Book Series, vol. 4, 2010. |
[5] |
Discrete Contin. Dyn. Syst., 30 (2011), 1083-1093.
doi: 10.3934/dcds.2011.30.1083. |
[6] |
Comm. Pure and Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[7] |
Comm. P.D.E., 30 (2005), 59-65.
doi: 10.1081/PDE-200044445. |
[8] |
J. Math. Anal. Appl., 223 (1998), 429-471.
doi: 10.1006/jmaa.1998.5958. |
[9] |
Rev. Mat. Iberoamericana, 20 (2004), 67-86. |
[10] |
Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387-397. |
[11] |
J. Math. Pures. Appl., 61 (1982), 41-63. |
[12] |
Comm. P.D.E., 6 (1981), 883-901.
doi: 10.1002/cpa.3160340406. |
[13] |
Commun. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[14] |
Journal of Differential Equations, 225 (2006), 685-709.
doi: 10.1016/j.jde.2005.10.016. |
[15] |
Comm. P.D.E., 33 (2008), 263-284.
doi: 10.1080/03605300701257476. |
[16] |
Proceedings of the Royal Society of Edinburgh, 138 (2008), 339-359.
doi: 10.1017/S0308210506000394. |
[17] |
Ann. Inst. H. Poincare Anal. Non Lineaire, 26 (2009), 1-21.
doi: 10.1016/j.anihpc.2007.03.006. |
[18] |
Differential Integral Equations, 7 (1994), 301-313. |
[19] |
Trans. Amer. Math. Soc., 346 (1994), 117-135.
doi: 10.1090/S0002-9947-1994-1270664-3. |
[20] |
Proc. Amer. Math. Soc., 134 (2006), 1661-1670.
doi: 10.1090/S0002-9939-05-08411-X. |
[21] |
SIAM J. Math. Anal., 40 (2008), 1049-1057.
doi: 10.1137/080712301. |
[22] |
Journal d'Analyse Mathématique, 90 (2003), 27-87.
doi: 10.1007/BF02786551. |
[23] |
Duke Math. J., 80 (1995), 383-417.
doi: 10.1215/S0012-7094-95-08016-8. |
[24] |
Differential Integral Equations, 12 (1999), 601-612. |
[25] |
Comm. Pure and Appl, Anal., 5 (2006), 855-859.
doi: 10.3934/cpaa.2006.5.855. |
[26] |
Advances in Mathematics, 226 (2011), 2676-2699.
doi: 10.1016/j.aim.2010.07.020. |
[27] |
Arch. Ration. Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3. |
[28] |
Diff. Int. Eq., 9 (1996), 465-479. |
[29] |
Differential Integral Equations, 9 (1996), 1157-1164. |
[30] |
Diff. Int. Eq., 9 (1996), 635-653. |
[31] |
Atti Sem. Mat. Fis. Univ. Modena. Sippl., 46 (1998), 369-380. Google Scholar |
[32] |
Comm. P.D.E., 23 (1998), 577-599.
doi: 10.1080/03605309808821356. |
[33] |
Advances in Mathematics, 221 (2009), 1409-1427.
doi: 10.1016/j.aim.2009.02.014. |
[34] |
Diff. Int. Eq., 8 (1995), 1911-1922. |
[35] |
Adv. Diff. Eq., 1 (1996), 241-264. |
[36] |
Calc. Var., 46 (2013), 75-95.
doi: 10.1007/s00526-011-0474-z. |
[37] |
X. Yu, Liouville Type Theorems for Singular Integral Equations and Integral Systems,, preprint., (). Google Scholar |
[38] |
Journal of Differential Equations, 254 (2013), 2173-2182.
doi: 10.1016/j.jde.2012.11.021. |
[1] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[2] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395 |
[3] |
Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021069 |
[4] |
Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037 |
[5] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374 |
[6] |
Nadezhda Maltugueva, Nikolay Pogodaev. Modeling of crowds in regions with moving obstacles. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021066 |
[7] |
Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021017 |
[8] |
Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041 |
[9] |
Muberra Allahverdi, Harun Aydilek, Asiye Aydilek, Ali Allahverdi. A better dominance relation and heuristics for Two-Machine No-Wait Flowshops with Maximum Lateness Performance Measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1973-1991. doi: 10.3934/jimo.2020054 |
[10] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[11] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[12] |
Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341 |
[13] |
Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005 |
[14] |
Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021037 |
[15] |
John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023 |
[16] |
Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075 |
[17] |
Andreas Neubauer. On Tikhonov-type regularization with approximated penalty terms. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021027 |
[18] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[19] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[20] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021004 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]