• Previous Article
    The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces
  • DCDS Home
  • This Issue
  • Next Article
    On effects of sampling radius for the nonlocal Patlak-Keller-Segel chemotaxis model
November  2014, 34(11): 4947-4966. doi: 10.3934/dcds.2014.34.4947

Liouville type theorem for nonlinear elliptic equation with general nonlinearity

1. 

The Center for China's Overseas Interests, Shenzhen University, Shenzhen Guangdong, 518060, China

Received  September 2013 Revised  December 2013 Published  May 2014

In this paper, we study the nonexistence of positive solutions for the following elliptic equation $$ \left\{ \begin{array}{ll} \displaystyle -\Delta u=f(u) & in \quad \mathbb{R}_+^N, \displaystyle \\ \frac{\partial u}{\partial \nu}=g(u) & on \quad \partial \mathbb{R}_+^N \end{array} \right. $$ and elliptic system $$ \left\{ \begin{array}{ll} \displaystyle -\Delta u_1=f_1(u_1,u_2) &in \quad \mathbb{R}_+^N, \\ \\-\Delta u_2=f_2(u_1,u_2) & in\quad \mathbb{R}_+^N, \\ \displaystyle \\ \frac{\partial u_1}{\partial \nu}=g_1(u_1,u_2),\quad \frac{\partial u_2}{\partial \nu}=g_2(u_1,u_2) & on \quad \partial \mathbb{R}_+^N. \end{array} \right. $$ We will prove that these problems possess no positive solutions under some assumptions on nonlinear terms. The main technique we use is the moving plane method in an integral form.
Citation: Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947
References:
[1]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8.

[2]

W. Chen and C. Li, An integral system and the Lane-Emdem conjecture, Disc. Cont. Dyn. Sys., 24 (2009), 1167-1184. doi: 10.3934/dcds.2009.24.1167.

[3]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Mathematica Scientia, 29 (2009), 949-960. doi: 10.1016/S0252-9602(09)60079-5.

[4]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series, vol. 4, 2010.

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type, Discrete Contin. Dyn. Syst., 30 (2011), 1083-1093. doi: 10.3934/dcds.2011.30.1083.

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure and Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. P.D.E., 30 (2005), 59-65. doi: 10.1081/PDE-200044445.

[8]

M. Chipot, M. Chlebik, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $\mathbb R_+^n$ with a nonlinear boundary condition, J. Math. Anal. Appl., 223 (1998), 429-471. doi: 10.1006/jmaa.1998.5958.

[9]

L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev. Mat. Iberoamericana, 20 (2004), 67-86.

[10]

D. G. De Figueiredo and P. L. Felmer, A Liouville type theorem for Elliptic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387-397.

[11]

D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equation, J. Math. Pures. Appl., 61 (1982), 41-63.

[12]

B. Gidas and J. Spruk, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. P.D.E., 6 (1981), 883-901. doi: 10.1002/cpa.3160340406.

[13]

B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via maximum principle, Commun. Math. Phys., 68 (1979), 209-243. doi: 10.1007/BF01221125.

[14]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbb R^N$, Journal of Differential Equations, 225 (2006), 685-709. doi: 10.1016/j.jde.2005.10.016.

[15]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbb R^N$, Comm. P.D.E., 33 (2008), 263-284. doi: 10.1080/03605300701257476.

[16]

Y. Guo and J. Liu, Liouville-type theorems for polyharmonic equations in $\mathbb R^N$ and in $\mathbb R^N_+$, Proceedings of the Royal Society of Edinburgh, 138 (2008), 339-359. doi: 10.1017/S0308210506000394.

[17]

F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry, Ann. Inst. H. Poincare Anal. Non Lineaire, 26 (2009), 1-21. doi: 10.1016/j.anihpc.2007.03.006.

[18]

B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Differential Integral Equations, 7 (1994), 301-313.

[19]

B. Hu and H. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., 346 (1994), 117-135. doi: 10.1090/S0002-9947-1994-1270664-3.

[20]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670. doi: 10.1090/S0002-9939-05-08411-X.

[21]

C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049-1057. doi: 10.1137/080712301.

[22]

Y. Li and L. Zhang, Liouville-type theorems and harnack-type inequalities for semilinear elliptic equations, Journal d'Analyse Mathématique, 90 (2003), 27-87. doi: 10.1007/BF02786551.

[23]

Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417. doi: 10.1215/S0012-7094-95-08016-8.

[24]

Y. Lou and M. Zhu, Classifications of nonnegative solutions to some elliptic problems, Differential Integral Equations, 12 (1999), 601-612.

[25]

L. Ma and D. Chen, A Liouville type theorem for an integral system, Comm. Pure and Appl, Anal., 5 (2006), 855-859. doi: 10.3934/cpaa.2006.5.855.

[26]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Advances in Mathematics, 226 (2011), 2676-2699. doi: 10.1016/j.aim.2010.07.020.

[27]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467. doi: 10.1007/s00205-008-0208-3.

[28]

E. Mitidieri, Nonexistence of positive solutions of semilinear systems in $ R^N$, Diff. Int. Eq., 9 (1996), 465-479.

[29]

B. Ou, Positive harmonic functions on the upper half space satisfying a nonlinear boundary condition, Differential Integral Equations, 9 (1996), 1157-1164.

[30]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system, Diff. Int. Eq., 9 (1996), 635-653.

[31]

J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden system, Atti Sem. Mat. Fis. Univ. Modena. Sippl., 46 (1998), 369-380.

[32]

J. Serrin and H. Zou, Existence of positive entire solutions of elliptic Hamiltonian systems, Comm. P.D.E., 23 (1998), 577-599. doi: 10.1080/03605309808821356.

[33]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Advances in Mathematics, 221 (2009), 1409-1427. doi: 10.1016/j.aim.2009.02.014.

[34]

S. Terracini, Symmetry properties of positives solutions to some elliptic equations with nonlinear boundary conditions, Diff. Int. Eq., 8 (1995), 1911-1922.

[35]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Diff. Eq., 1 (1996), 241-264.

[36]

X. Yu, Liouville type theorems for integral equations and integral systems, Calc. Var., 46 (2013), 75-95. doi: 10.1007/s00526-011-0474-z.

[37]

X. Yu, Liouville Type Theorems for Singular Integral Equations and Integral Systems,, preprint., (). 

[38]

X. Yu, Liouville type theorem in the Heisenberg group with general nonlinearity, Journal of Differential Equations, 254 (2013), 2173-2182. doi: 10.1016/j.jde.2012.11.021.

show all references

References:
[1]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8.

[2]

W. Chen and C. Li, An integral system and the Lane-Emdem conjecture, Disc. Cont. Dyn. Sys., 24 (2009), 1167-1184. doi: 10.3934/dcds.2009.24.1167.

[3]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Mathematica Scientia, 29 (2009), 949-960. doi: 10.1016/S0252-9602(09)60079-5.

[4]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series, vol. 4, 2010.

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type, Discrete Contin. Dyn. Syst., 30 (2011), 1083-1093. doi: 10.3934/dcds.2011.30.1083.

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure and Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. P.D.E., 30 (2005), 59-65. doi: 10.1081/PDE-200044445.

[8]

M. Chipot, M. Chlebik, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $\mathbb R_+^n$ with a nonlinear boundary condition, J. Math. Anal. Appl., 223 (1998), 429-471. doi: 10.1006/jmaa.1998.5958.

[9]

L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev. Mat. Iberoamericana, 20 (2004), 67-86.

[10]

D. G. De Figueiredo and P. L. Felmer, A Liouville type theorem for Elliptic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387-397.

[11]

D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equation, J. Math. Pures. Appl., 61 (1982), 41-63.

[12]

B. Gidas and J. Spruk, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. P.D.E., 6 (1981), 883-901. doi: 10.1002/cpa.3160340406.

[13]

B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via maximum principle, Commun. Math. Phys., 68 (1979), 209-243. doi: 10.1007/BF01221125.

[14]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbb R^N$, Journal of Differential Equations, 225 (2006), 685-709. doi: 10.1016/j.jde.2005.10.016.

[15]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbb R^N$, Comm. P.D.E., 33 (2008), 263-284. doi: 10.1080/03605300701257476.

[16]

Y. Guo and J. Liu, Liouville-type theorems for polyharmonic equations in $\mathbb R^N$ and in $\mathbb R^N_+$, Proceedings of the Royal Society of Edinburgh, 138 (2008), 339-359. doi: 10.1017/S0308210506000394.

[17]

F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry, Ann. Inst. H. Poincare Anal. Non Lineaire, 26 (2009), 1-21. doi: 10.1016/j.anihpc.2007.03.006.

[18]

B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Differential Integral Equations, 7 (1994), 301-313.

[19]

B. Hu and H. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., 346 (1994), 117-135. doi: 10.1090/S0002-9947-1994-1270664-3.

[20]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670. doi: 10.1090/S0002-9939-05-08411-X.

[21]

C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049-1057. doi: 10.1137/080712301.

[22]

Y. Li and L. Zhang, Liouville-type theorems and harnack-type inequalities for semilinear elliptic equations, Journal d'Analyse Mathématique, 90 (2003), 27-87. doi: 10.1007/BF02786551.

[23]

Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417. doi: 10.1215/S0012-7094-95-08016-8.

[24]

Y. Lou and M. Zhu, Classifications of nonnegative solutions to some elliptic problems, Differential Integral Equations, 12 (1999), 601-612.

[25]

L. Ma and D. Chen, A Liouville type theorem for an integral system, Comm. Pure and Appl, Anal., 5 (2006), 855-859. doi: 10.3934/cpaa.2006.5.855.

[26]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Advances in Mathematics, 226 (2011), 2676-2699. doi: 10.1016/j.aim.2010.07.020.

[27]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467. doi: 10.1007/s00205-008-0208-3.

[28]

E. Mitidieri, Nonexistence of positive solutions of semilinear systems in $ R^N$, Diff. Int. Eq., 9 (1996), 465-479.

[29]

B. Ou, Positive harmonic functions on the upper half space satisfying a nonlinear boundary condition, Differential Integral Equations, 9 (1996), 1157-1164.

[30]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system, Diff. Int. Eq., 9 (1996), 635-653.

[31]

J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden system, Atti Sem. Mat. Fis. Univ. Modena. Sippl., 46 (1998), 369-380.

[32]

J. Serrin and H. Zou, Existence of positive entire solutions of elliptic Hamiltonian systems, Comm. P.D.E., 23 (1998), 577-599. doi: 10.1080/03605309808821356.

[33]

P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Advances in Mathematics, 221 (2009), 1409-1427. doi: 10.1016/j.aim.2009.02.014.

[34]

S. Terracini, Symmetry properties of positives solutions to some elliptic equations with nonlinear boundary conditions, Diff. Int. Eq., 8 (1995), 1911-1922.

[35]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Diff. Eq., 1 (1996), 241-264.

[36]

X. Yu, Liouville type theorems for integral equations and integral systems, Calc. Var., 46 (2013), 75-95. doi: 10.1007/s00526-011-0474-z.

[37]

X. Yu, Liouville Type Theorems for Singular Integral Equations and Integral Systems,, preprint., (). 

[38]

X. Yu, Liouville type theorem in the Heisenberg group with general nonlinearity, Journal of Differential Equations, 254 (2013), 2173-2182. doi: 10.1016/j.jde.2012.11.021.

[1]

Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549

[2]

Tomasz Komorowski, Adam Bobrowski. A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3495-3502. doi: 10.3934/dcdss.2020248

[3]

Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317

[4]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, 2021, 29 (5) : 2829-2839. doi: 10.3934/era.2021016

[5]

Xiaomei Chen, Xiaohui Yu. Liouville type theorem for Hartree-Fock Equation on half space. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2079-2100. doi: 10.3934/cpaa.2022050

[6]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[7]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure and Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[8]

Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure and Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807

[9]

Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201

[10]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[11]

Yuan Li. Extremal solution and Liouville theorem for anisotropic elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4063-4082. doi: 10.3934/cpaa.2021144

[12]

Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236

[13]

Anh Tuan Duong, Quoc Hung Phan. A Liouville-type theorem for cooperative parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 823-833. doi: 10.3934/dcds.2018035

[14]

Shigeru Sakaguchi. A Liouville-type theorem for some Weingarten hypersurfaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 887-895. doi: 10.3934/dcdss.2011.4.887

[15]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[16]

Xiao-Li Ding, Iván Area, Juan J. Nieto. Controlled singular evolution equations and Pontryagin type maximum principle with applications. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021059

[17]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations and Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[18]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[19]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[20]

Xinjing Wang, Pengcheng Niu, Xuewei Cui. A Liouville type theorem to an extension problem relating to the Heisenberg group. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2379-2394. doi: 10.3934/cpaa.2018113

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]