• Previous Article
    Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species
  • DCDS Home
  • This Issue
  • Next Article
    The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces
November  2014, 34(11): 4987-4987. doi: 10.3934/dcds.2014.34.4987

Erratum to: "On a functional satisfying a weak Palais-Smale condition"

1. 

Dipartimento di Matematica ed Informatica, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, I-85100 Potenza, Italy

Published  May 2014

N/A
Citation: A. Azzollini. Erratum to: "On a functional satisfying a weak Palais-Smale condition". Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4987-4987. doi: 10.3934/dcds.2014.34.4987
References:
[1]

DCDS series A, 34 (2014), 1829-1840. doi: 10.3934/dcds.2014.34.1829.  Google Scholar

[2]

NoDEA Nonlinear Differential Equations Appl., 18 (2011), 369-405. doi: 10.1007/s00030-011-0100-y.  Google Scholar

show all references

References:
[1]

DCDS series A, 34 (2014), 1829-1840. doi: 10.3934/dcds.2014.34.1829.  Google Scholar

[2]

NoDEA Nonlinear Differential Equations Appl., 18 (2011), 369-405. doi: 10.1007/s00030-011-0100-y.  Google Scholar

[1]

Freddy Dumortier, Robert Roussarie. Erratum. Discrete & Continuous Dynamical Systems, 2008, 22 (3) : 816-816. doi: 10.3934/dcds.2008.22.816

[2]

M. R. Hassan. Erratum. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2277-2277. doi: 10.3934/jimo.2021064

[3]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[4]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[5]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[6]

Hyunjin Ahn, Seung-Yeal Ha, Woojoo Shim. Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds. Kinetic & Related Models, 2021, 14 (2) : 323-351. doi: 10.3934/krm.2021007

[7]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[8]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[9]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[10]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[11]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[12]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032

[13]

Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021040

[14]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[15]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042

[16]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[17]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[18]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058

[19]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[20]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]