November  2014, 34(11): 4989-4995. doi: 10.3934/dcds.2014.34.4989

Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species

1. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260

2. 

Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210, United States

3. 

Department of Mathematics, Mathematical Bioscience Institute, Ohio State University, Columbus, Ohio 43210

Received  December 2013 Revised  December 2013 Published  May 2014

We provide a corrected proof of [4, Theorem 2.2], which preserves the validity of the theorem exactly under those assumptions as stated in the original paper.
Citation: Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989
References:
[1]

H. Amann and J. Lopez-Gomez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems,, J. Diff. Eqns., 146 (2002), 336.  doi: 10.1006/jdeq.1998.3440.  Google Scholar

[2]

F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment,, Canadian Appl. Math. Quarterly, 3 (1995), 379.   Google Scholar

[3]

S. Cano-Casanova and J. Lopez-Gomez, Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems,, J. Diff. Eqns., 178 (2002), 123.  doi: 10.1006/jdeq.2000.4003.  Google Scholar

[4]

X. Chen, K.-Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competiting species,, Discrete Cont. Dyn. Sys. A, 32 (2012), 3841.  doi: 10.3934/dcds.2012.32.3841.  Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equation of Second Order,, $2^{nd}$ Ed., (1983).   Google Scholar

show all references

References:
[1]

H. Amann and J. Lopez-Gomez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems,, J. Diff. Eqns., 146 (2002), 336.  doi: 10.1006/jdeq.1998.3440.  Google Scholar

[2]

F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment,, Canadian Appl. Math. Quarterly, 3 (1995), 379.   Google Scholar

[3]

S. Cano-Casanova and J. Lopez-Gomez, Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems,, J. Diff. Eqns., 178 (2002), 123.  doi: 10.1006/jdeq.2000.4003.  Google Scholar

[4]

X. Chen, K.-Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competiting species,, Discrete Cont. Dyn. Sys. A, 32 (2012), 3841.  doi: 10.3934/dcds.2012.32.3841.  Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equation of Second Order,, $2^{nd}$ Ed., (1983).   Google Scholar

[1]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[2]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[6]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[7]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[8]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[9]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[10]

Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020361

[11]

Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[14]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[15]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[16]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[17]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[18]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[19]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[20]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]