December  2014, 34(12): 4997-5043. doi: 10.3934/dcds.2014.34.4997

Structural stability for the splash singularities of the water waves problem

1. 

Departamento de Matemáticas de la UAM, Instituto de Ciencias Matemáticas del CSIC, Campus de Cantoblanco, 28049 Madrid

2. 

Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, C/ Nicolas Cabrera, 13-15, 28049 Madrid

3. 

Department of Mathematics, Princeton University, 1102 Fine Hall, Washington Road, Princeton, New Jersey 08544

4. 

Departamento de Análisis Matemático & IMUS, Universidad de Sevilla, Campus Reina Mercedes, 41012 Sevilla, Spain

5. 

Department of Mathematics, Princeton University, 1102 Fine Hall, Washington Rd, Princeton, NJ 08544

Received  January 2014 Revised  May 2014 Published  June 2014

In this paper we show a structural stability result for water waves. The main motivation for this result is that we aim to exhibit a water wave whose interface starts as a graph and ends in a splash. Numerical simulations lead to an approximate solution with the desired behaviour. The stability result will conclude that near the approximate solution to water waves there is an exact solution.
Citation: Angel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, Javier Gómez-Serrano. Structural stability for the splash singularities of the water waves problem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 4997-5043. doi: 10.3934/dcds.2014.34.4997
References:
[1]

J. T. Beale, T. Y. Hou and J. Lowengrub, Convergence of a boundary integral method for water waves,, SIAM J. Numer. Anal., 33 (1996), 1797.  doi: 10.1137/S0036142993245750.  Google Scholar

[2]

A. Castro, D. Córdoba, C. Fefferman, F. Gancedo and J. Gómez-Serrano, Splash singularity for water waves,, Proceedings of the National Academy of Sciences, 109 (2012), 733.  doi: 10.1073/pnas.1115948108.  Google Scholar

[3]

A. Castro, D. Córdoba, C. Fefferman, F. Gancedo and J. Gómez-Serrano, Finite time singularities for the free boundary incompressible Euler equations,, Ann. of Math. (2), 178 (2013), 1061.  doi: 10.4007/annals.2013.178.3.6.  Google Scholar

[4]

Á. Castro, D. Córdoba, C. Fefferman, F. Gancedo and M. López-Fernández, Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves,, Ann. of Math. (2), 175 (2012), 909.  doi: 10.4007/annals.2012.175.2.9.  Google Scholar

[5]

D. Coutand and S. Shkoller, On the finite-time splash and splat singularities for the 3-D free-surface Euler equations,, Comm. Math. Phys., 325 (2014), 143.  doi: 10.1007/s00220-013-1855-2.  Google Scholar

[6]

C. Fefferman, A. D. Ionescu and V. Lie, On the absence of "splash'' singularities in the case of two-fluid interfaces,, arXiv preprint , (2013).   Google Scholar

[7]

G. B. Folland, Introduction to Partial Differential Equations,, Princeton University Press, (1995).   Google Scholar

[8]

M. Joldes, Rigorous Polynomial Approximations and Applications,, PhD thesis, (2011).   Google Scholar

[9]

D. Lannes, The Water Waves Problem: Mathematical Analysis and Asymptotics,, Mathematical Surveys and Monographs. Amer Mathematical Society, (2013).   Google Scholar

show all references

References:
[1]

J. T. Beale, T. Y. Hou and J. Lowengrub, Convergence of a boundary integral method for water waves,, SIAM J. Numer. Anal., 33 (1996), 1797.  doi: 10.1137/S0036142993245750.  Google Scholar

[2]

A. Castro, D. Córdoba, C. Fefferman, F. Gancedo and J. Gómez-Serrano, Splash singularity for water waves,, Proceedings of the National Academy of Sciences, 109 (2012), 733.  doi: 10.1073/pnas.1115948108.  Google Scholar

[3]

A. Castro, D. Córdoba, C. Fefferman, F. Gancedo and J. Gómez-Serrano, Finite time singularities for the free boundary incompressible Euler equations,, Ann. of Math. (2), 178 (2013), 1061.  doi: 10.4007/annals.2013.178.3.6.  Google Scholar

[4]

Á. Castro, D. Córdoba, C. Fefferman, F. Gancedo and M. López-Fernández, Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves,, Ann. of Math. (2), 175 (2012), 909.  doi: 10.4007/annals.2012.175.2.9.  Google Scholar

[5]

D. Coutand and S. Shkoller, On the finite-time splash and splat singularities for the 3-D free-surface Euler equations,, Comm. Math. Phys., 325 (2014), 143.  doi: 10.1007/s00220-013-1855-2.  Google Scholar

[6]

C. Fefferman, A. D. Ionescu and V. Lie, On the absence of "splash'' singularities in the case of two-fluid interfaces,, arXiv preprint , (2013).   Google Scholar

[7]

G. B. Folland, Introduction to Partial Differential Equations,, Princeton University Press, (1995).   Google Scholar

[8]

M. Joldes, Rigorous Polynomial Approximations and Applications,, PhD thesis, (2011).   Google Scholar

[9]

D. Lannes, The Water Waves Problem: Mathematical Analysis and Asymptotics,, Mathematical Surveys and Monographs. Amer Mathematical Society, (2013).   Google Scholar

[1]

Maxime Breden, Jean-Philippe Lessard. Polynomial interpolation and a priori bootstrap for computer-assisted proofs in nonlinear ODEs. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2825-2858. doi: 10.3934/dcdsb.2018164

[2]

Thomas Wanner. Computer-assisted equilibrium validation for the diblock copolymer model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1075-1107. doi: 10.3934/dcds.2017045

[3]

István Balázs, Jan Bouwe van den Berg, Julien Courtois, János Dudás, Jean-Philippe Lessard, Anett Vörös-Kiss, JF Williams, Xi Yuan Yin. Computer-assisted proofs for radially symmetric solutions of PDEs. Journal of Computational Dynamics, 2018, 5 (1&2) : 61-80. doi: 10.3934/jcd.2018003

[4]

A. Aschwanden, A. Schulze-Halberg, D. Stoffer. Stable periodic solutions for delay equations with positive feedback - a computer-assisted proof. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 721-736. doi: 10.3934/dcds.2006.14.721

[5]

Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95

[6]

Anwar Ja'afar Mohamad Jawad, Mohammad Mirzazadeh, Anjan Biswas. Dynamics of shallow water waves with Gardner-Kadomtsev-Petviashvili equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1155-1164. doi: 10.3934/dcdss.2015.8.1155

[7]

Mouhamadou Aliou M. T. Baldé, Diaraf Seck. Coupling the shallow water equation with a long term dynamics of sand dunes. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1521-1551. doi: 10.3934/dcdss.2016061

[8]

Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[9]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[10]

Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure & Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549

[11]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[12]

Walter A. Strauss. Vorticity jumps in steady water waves. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101

[13]

Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465

[14]

Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1

[15]

Martina Chirilus-Bruckner, Guido Schneider. Interaction of oscillatory packets of water waves. Conference Publications, 2015, 2015 (special) : 267-275. doi: 10.3934/proc.2015.0267

[16]

Emile Franc Doungmo Goufo, Abdon Atangana. Dynamics of traveling waves of variable order hyperbolic Liouville equation: Regulation and control. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 645-662. doi: 10.3934/dcdss.2020035

[17]

Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557

[18]

Jerry Bona, H. Kalisch. Singularity formation in the generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 27-45. doi: 10.3934/dcds.2004.11.27

[19]

Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239

[20]

Anca-Voichita Matioc. On particle trajectories in linear deep-water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1537-1547. doi: 10.3934/cpaa.2012.11.1537

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (4)

[Back to Top]