-
Previous Article
A transformation of Markov jump processes and applications in genetic study
- DCDS Home
- This Issue
-
Next Article
Structural stability for the splash singularities of the water waves problem
Remarks on geometric properties of SQG sharp fronts and $\alpha$-patches
1. | Departamento de Matemáticas de la UAM, Instituto de Ciencias Matemáticas del CSIC, Campus de Cantoblanco, 28049 Madrid, Spain |
2. | Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, C/ Nicolas Cabrera, 13-15, 28049 Madrid, Spain, Spain |
3. | Department of Mathematics, Princeton University, 1102 Fine Hall, Washington Rd, Princeton, NJ 08544, United States |
References:
[1] |
A. L. Bertozzi and P. Constantin, Global regularity for vortex patches,, Comm. Math. Phys., 152 (1993), 19.
doi: 10.1007/BF02097055. |
[2] |
M. Berz and K. Makino, New methods for high-dimensional verified quadrature,, Reliable Computing, 5 (1999), 13.
doi: 10.1023/A:1026437523641. |
[3] |
D. Chae, P. Constantin, D. Córdoba, F. Gancedo and J. Wu, Generalized surface quasi-geostrophic equations with singular velocities,, Comm. Pure Appl. Math., 65 (2012), 1037.
doi: 10.1002/cpa.21390. |
[4] |
J.-Y. Chemin, Persistance de structures géométriques dans les fluides incompressibles bidimensionnels,, Ann. Sci. École Norm. Sup. (4), 26 (1993), 517.
|
[5] |
P. Constantin, A. J. Majda and E. Tabak, Formation of strong fronts in the $2$-D quasigeostrophic thermal active scalar,, Nonlinearity, 7 (1994), 1495.
doi: 10.1088/0951-7715/7/6/001. |
[6] |
D. Córdoba, M. A. Fontelos, A. M. Mancho and J. L. Rodrigo, Evidence of singularities for a family of contour dynamics equations,, Proc. Natl. Acad. Sci. USA, 02 (2005), 5949. Google Scholar |
[7] |
G. S. Deem and N. J. Zabusky, Vortex waves: Stationary "V-states", interactions, recurrence, and breaking,, Physical Review Letters, 40 (1978), 859.
doi: 10.1103/PhysRevLett.40.859. |
[8] |
S. A. Denisov, The Sharp Corner Formation in 2d Euler Dynamics of Patches: Infinite Double Exponential rate of Merging,, ArXiv e-prints, (2012). Google Scholar |
[9] |
F. Gancedo, Existence for the $\alpha$-patch model and the QC sharp front in Sobolev spaces,, Adv. Math., 217 (2008), 2569.
doi: 10.1016/j.aim.2007.10.010. |
[10] |
F. Gancedo and R. M. Strain, Absence of splash singularities for SQG sharp fronts and the Muskat problem,, Proc. Natl. Acad. Sci. USA, 111 (2014), 635.
doi: 10.1073/pnas.1320554111. |
[11] |
J. Gómez-Serrano and R. Granero-Belinchón, On turning waves for the inhomogeneous Muskat problem: A computer-assisted proof,, Nonlinearity, 27 (2014), 1471.
doi: 10.1088/0951-7715/27/6/1471. |
[12] |
I. M. Held, R. T. Pierrehumbert, S. T. Garner and K. L. Swanson, Surface quasi-geostrophic dynamics,, J. Fluid Mech., 282 (1995), 1.
doi: 10.1017/S0022112095000012. |
[13] |
T. Hmidi, J. Mateu and J. Verdera, Boundary regularity of rotating vortex patches,, Archive for Rational Mechanics and Analysis, 209 (2013), 171.
doi: 10.1007/s00205-013-0618-8. |
[14] |
W. Hofschuster and W. Krämer, C-XSC 2.0-A C++ library for extended scientific computing,, In Numerical software with result verification, 2991 (2004), 15.
doi: 10.1007/978-3-540-24738-8_2. |
[15] |
O. Holzmann, B. Lang and H. Schütt, Newton's constant of gravitation and verified numerical quadrature,, Reliable Computing, 2 (1996), 229.
doi: 10.1007/BF02391697. |
[16] |
W. Krämer and S. Wedner, Two adaptive Gauss-Legendre type algorithms for the verified computation of definite integrals,, Reliable Computing, 2 (1996), 241.
doi: 10.1007/BF02391698. |
[17] |
H. Lamb, Hydrodynamics,, Cambridge Mathematical Library. Cambridge University Press, (1993).
|
[18] |
B. Lang, Derivative-based subdivision in multi-dimensional verified gaussian quadrature,, In G. Alefeld, (2001), 145.
|
[19] |
R. Moore and F. Bierbaum, Methods and Applications of Interval Analysis, volume 2,, Society for Industrial & Applied Mathematics, (1979).
|
[20] |
J. Pedlosky, Geophysical fluid dynamics,, Journal of Applied Mechanics, 48 (1981).
doi: 10.1115/1.3157711. |
[21] |
S. G. Resnick, Dynamical Problems in Non-Linear Advective Partial Differential Equations,, PhD thesis, (1995). Google Scholar |
[22] |
J. L. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation,, Comm. Pure Appl. Math., 58 (2005), 821.
doi: 10.1002/cpa.20059. |
[23] |
R. Scott and D. Dritschel, A self-similar cascade of instabilities in the surface quasigeostrophic system,, Phys. Rev. Lett., 112 (2014).
doi: 10.1103/PhysRevLett.112.144505. |
[24] |
R. K. Scott, A scenario for finite-time singularity in the quasigeostrophic model,, Journal of Fluid Mechanics, 687 (2011), 492. Google Scholar |
[25] |
W. Tucker, Validated Numerics,, Princeton University Press, (2011).
|
[26] |
H. M. Wu, E. A. Overman and N. J. Zabusky, Steady-state solutions of the Euler equations in two dimensions: Rotating and translating $V$-states with limiting cases. I. Numerical algorithms and results,, J. Comput. Phys., 53 (1984), 42.
doi: 10.1016/0021-9991(84)90051-2. |
[27] |
V. I. Yudovich., Non-stationary flows of an ideal incompressible fluid,, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032.
|
show all references
References:
[1] |
A. L. Bertozzi and P. Constantin, Global regularity for vortex patches,, Comm. Math. Phys., 152 (1993), 19.
doi: 10.1007/BF02097055. |
[2] |
M. Berz and K. Makino, New methods for high-dimensional verified quadrature,, Reliable Computing, 5 (1999), 13.
doi: 10.1023/A:1026437523641. |
[3] |
D. Chae, P. Constantin, D. Córdoba, F. Gancedo and J. Wu, Generalized surface quasi-geostrophic equations with singular velocities,, Comm. Pure Appl. Math., 65 (2012), 1037.
doi: 10.1002/cpa.21390. |
[4] |
J.-Y. Chemin, Persistance de structures géométriques dans les fluides incompressibles bidimensionnels,, Ann. Sci. École Norm. Sup. (4), 26 (1993), 517.
|
[5] |
P. Constantin, A. J. Majda and E. Tabak, Formation of strong fronts in the $2$-D quasigeostrophic thermal active scalar,, Nonlinearity, 7 (1994), 1495.
doi: 10.1088/0951-7715/7/6/001. |
[6] |
D. Córdoba, M. A. Fontelos, A. M. Mancho and J. L. Rodrigo, Evidence of singularities for a family of contour dynamics equations,, Proc. Natl. Acad. Sci. USA, 02 (2005), 5949. Google Scholar |
[7] |
G. S. Deem and N. J. Zabusky, Vortex waves: Stationary "V-states", interactions, recurrence, and breaking,, Physical Review Letters, 40 (1978), 859.
doi: 10.1103/PhysRevLett.40.859. |
[8] |
S. A. Denisov, The Sharp Corner Formation in 2d Euler Dynamics of Patches: Infinite Double Exponential rate of Merging,, ArXiv e-prints, (2012). Google Scholar |
[9] |
F. Gancedo, Existence for the $\alpha$-patch model and the QC sharp front in Sobolev spaces,, Adv. Math., 217 (2008), 2569.
doi: 10.1016/j.aim.2007.10.010. |
[10] |
F. Gancedo and R. M. Strain, Absence of splash singularities for SQG sharp fronts and the Muskat problem,, Proc. Natl. Acad. Sci. USA, 111 (2014), 635.
doi: 10.1073/pnas.1320554111. |
[11] |
J. Gómez-Serrano and R. Granero-Belinchón, On turning waves for the inhomogeneous Muskat problem: A computer-assisted proof,, Nonlinearity, 27 (2014), 1471.
doi: 10.1088/0951-7715/27/6/1471. |
[12] |
I. M. Held, R. T. Pierrehumbert, S. T. Garner and K. L. Swanson, Surface quasi-geostrophic dynamics,, J. Fluid Mech., 282 (1995), 1.
doi: 10.1017/S0022112095000012. |
[13] |
T. Hmidi, J. Mateu and J. Verdera, Boundary regularity of rotating vortex patches,, Archive for Rational Mechanics and Analysis, 209 (2013), 171.
doi: 10.1007/s00205-013-0618-8. |
[14] |
W. Hofschuster and W. Krämer, C-XSC 2.0-A C++ library for extended scientific computing,, In Numerical software with result verification, 2991 (2004), 15.
doi: 10.1007/978-3-540-24738-8_2. |
[15] |
O. Holzmann, B. Lang and H. Schütt, Newton's constant of gravitation and verified numerical quadrature,, Reliable Computing, 2 (1996), 229.
doi: 10.1007/BF02391697. |
[16] |
W. Krämer and S. Wedner, Two adaptive Gauss-Legendre type algorithms for the verified computation of definite integrals,, Reliable Computing, 2 (1996), 241.
doi: 10.1007/BF02391698. |
[17] |
H. Lamb, Hydrodynamics,, Cambridge Mathematical Library. Cambridge University Press, (1993).
|
[18] |
B. Lang, Derivative-based subdivision in multi-dimensional verified gaussian quadrature,, In G. Alefeld, (2001), 145.
|
[19] |
R. Moore and F. Bierbaum, Methods and Applications of Interval Analysis, volume 2,, Society for Industrial & Applied Mathematics, (1979).
|
[20] |
J. Pedlosky, Geophysical fluid dynamics,, Journal of Applied Mechanics, 48 (1981).
doi: 10.1115/1.3157711. |
[21] |
S. G. Resnick, Dynamical Problems in Non-Linear Advective Partial Differential Equations,, PhD thesis, (1995). Google Scholar |
[22] |
J. L. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation,, Comm. Pure Appl. Math., 58 (2005), 821.
doi: 10.1002/cpa.20059. |
[23] |
R. Scott and D. Dritschel, A self-similar cascade of instabilities in the surface quasigeostrophic system,, Phys. Rev. Lett., 112 (2014).
doi: 10.1103/PhysRevLett.112.144505. |
[24] |
R. K. Scott, A scenario for finite-time singularity in the quasigeostrophic model,, Journal of Fluid Mechanics, 687 (2011), 492. Google Scholar |
[25] |
W. Tucker, Validated Numerics,, Princeton University Press, (2011).
|
[26] |
H. M. Wu, E. A. Overman and N. J. Zabusky, Steady-state solutions of the Euler equations in two dimensions: Rotating and translating $V$-states with limiting cases. I. Numerical algorithms and results,, J. Comput. Phys., 53 (1984), 42.
doi: 10.1016/0021-9991(84)90051-2. |
[27] |
V. I. Yudovich., Non-stationary flows of an ideal incompressible fluid,, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032.
|
[1] |
Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028 |
[2] |
Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166 |
[3] |
Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020336 |
[4] |
Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020366 |
[5] |
Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350 |
[6] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[7] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[8] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[9] |
Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406 |
[10] |
Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143 |
[11] |
Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020034 |
[12] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[13] |
Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389 |
[14] |
Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85 |
[15] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[16] |
Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 |
[17] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[18] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[19] |
Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047 |
[20] |
Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020365 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]