December  2014, 34(12): 5045-5059. doi: 10.3934/dcds.2014.34.5045

Remarks on geometric properties of SQG sharp fronts and $\alpha$-patches

1. 

Departamento de Matemáticas de la UAM, Instituto de Ciencias Matemáticas del CSIC, Campus de Cantoblanco, 28049 Madrid, Spain

2. 

Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, C/ Nicolas Cabrera, 13-15, 28049 Madrid, Spain, Spain

3. 

Department of Mathematics, Princeton University, 1102 Fine Hall, Washington Rd, Princeton, NJ 08544, United States

Received  January 2014 Revised  May 2014 Published  June 2014

Guided by numerical simulations, we present the proof of two results concerning the behaviour of SQG sharp fronts and $\alpha$-patches. We establish that ellipses are not rotational solutions and we prove that initially convex interfaces may lose this property in finite time.
Citation: Angel Castro, Diego Córdoba, Javier Gómez-Serrano, Alberto Martín Zamora. Remarks on geometric properties of SQG sharp fronts and $\alpha$-patches. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5045-5059. doi: 10.3934/dcds.2014.34.5045
References:
[1]

A. L. Bertozzi and P. Constantin, Global regularity for vortex patches,, Comm. Math. Phys., 152 (1993), 19.  doi: 10.1007/BF02097055.  Google Scholar

[2]

M. Berz and K. Makino, New methods for high-dimensional verified quadrature,, Reliable Computing, 5 (1999), 13.  doi: 10.1023/A:1026437523641.  Google Scholar

[3]

D. Chae, P. Constantin, D. Córdoba, F. Gancedo and J. Wu, Generalized surface quasi-geostrophic equations with singular velocities,, Comm. Pure Appl. Math., 65 (2012), 1037.  doi: 10.1002/cpa.21390.  Google Scholar

[4]

J.-Y. Chemin, Persistance de structures géométriques dans les fluides incompressibles bidimensionnels,, Ann. Sci. École Norm. Sup. (4), 26 (1993), 517.   Google Scholar

[5]

P. Constantin, A. J. Majda and E. Tabak, Formation of strong fronts in the $2$-D quasigeostrophic thermal active scalar,, Nonlinearity, 7 (1994), 1495.  doi: 10.1088/0951-7715/7/6/001.  Google Scholar

[6]

D. Córdoba, M. A. Fontelos, A. M. Mancho and J. L. Rodrigo, Evidence of singularities for a family of contour dynamics equations,, Proc. Natl. Acad. Sci. USA, 02 (2005), 5949.   Google Scholar

[7]

G. S. Deem and N. J. Zabusky, Vortex waves: Stationary "V-states", interactions, recurrence, and breaking,, Physical Review Letters, 40 (1978), 859.  doi: 10.1103/PhysRevLett.40.859.  Google Scholar

[8]

S. A. Denisov, The Sharp Corner Formation in 2d Euler Dynamics of Patches: Infinite Double Exponential rate of Merging,, ArXiv e-prints, (2012).   Google Scholar

[9]

F. Gancedo, Existence for the $\alpha$-patch model and the QC sharp front in Sobolev spaces,, Adv. Math., 217 (2008), 2569.  doi: 10.1016/j.aim.2007.10.010.  Google Scholar

[10]

F. Gancedo and R. M. Strain, Absence of splash singularities for SQG sharp fronts and the Muskat problem,, Proc. Natl. Acad. Sci. USA, 111 (2014), 635.  doi: 10.1073/pnas.1320554111.  Google Scholar

[11]

J. Gómez-Serrano and R. Granero-Belinchón, On turning waves for the inhomogeneous Muskat problem: A computer-assisted proof,, Nonlinearity, 27 (2014), 1471.  doi: 10.1088/0951-7715/27/6/1471.  Google Scholar

[12]

I. M. Held, R. T. Pierrehumbert, S. T. Garner and K. L. Swanson, Surface quasi-geostrophic dynamics,, J. Fluid Mech., 282 (1995), 1.  doi: 10.1017/S0022112095000012.  Google Scholar

[13]

T. Hmidi, J. Mateu and J. Verdera, Boundary regularity of rotating vortex patches,, Archive for Rational Mechanics and Analysis, 209 (2013), 171.  doi: 10.1007/s00205-013-0618-8.  Google Scholar

[14]

W. Hofschuster and W. Krämer, C-XSC 2.0-A C++ library for extended scientific computing,, In Numerical software with result verification, 2991 (2004), 15.  doi: 10.1007/978-3-540-24738-8_2.  Google Scholar

[15]

O. Holzmann, B. Lang and H. Schütt, Newton's constant of gravitation and verified numerical quadrature,, Reliable Computing, 2 (1996), 229.  doi: 10.1007/BF02391697.  Google Scholar

[16]

W. Krämer and S. Wedner, Two adaptive Gauss-Legendre type algorithms for the verified computation of definite integrals,, Reliable Computing, 2 (1996), 241.  doi: 10.1007/BF02391698.  Google Scholar

[17]

H. Lamb, Hydrodynamics,, Cambridge Mathematical Library. Cambridge University Press, (1993).   Google Scholar

[18]

B. Lang, Derivative-based subdivision in multi-dimensional verified gaussian quadrature,, In G. Alefeld, (2001), 145.   Google Scholar

[19]

R. Moore and F. Bierbaum, Methods and Applications of Interval Analysis, volume 2,, Society for Industrial & Applied Mathematics, (1979).   Google Scholar

[20]

J. Pedlosky, Geophysical fluid dynamics,, Journal of Applied Mechanics, 48 (1981).  doi: 10.1115/1.3157711.  Google Scholar

[21]

S. G. Resnick, Dynamical Problems in Non-Linear Advective Partial Differential Equations,, PhD thesis, (1995).   Google Scholar

[22]

J. L. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation,, Comm. Pure Appl. Math., 58 (2005), 821.  doi: 10.1002/cpa.20059.  Google Scholar

[23]

R. Scott and D. Dritschel, A self-similar cascade of instabilities in the surface quasigeostrophic system,, Phys. Rev. Lett., 112 (2014).  doi: 10.1103/PhysRevLett.112.144505.  Google Scholar

[24]

R. K. Scott, A scenario for finite-time singularity in the quasigeostrophic model,, Journal of Fluid Mechanics, 687 (2011), 492.   Google Scholar

[25]

W. Tucker, Validated Numerics,, Princeton University Press, (2011).   Google Scholar

[26]

H. M. Wu, E. A. Overman and N. J. Zabusky, Steady-state solutions of the Euler equations in two dimensions: Rotating and translating $V$-states with limiting cases. I. Numerical algorithms and results,, J. Comput. Phys., 53 (1984), 42.  doi: 10.1016/0021-9991(84)90051-2.  Google Scholar

[27]

V. I. Yudovich., Non-stationary flows of an ideal incompressible fluid,, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032.   Google Scholar

show all references

References:
[1]

A. L. Bertozzi and P. Constantin, Global regularity for vortex patches,, Comm. Math. Phys., 152 (1993), 19.  doi: 10.1007/BF02097055.  Google Scholar

[2]

M. Berz and K. Makino, New methods for high-dimensional verified quadrature,, Reliable Computing, 5 (1999), 13.  doi: 10.1023/A:1026437523641.  Google Scholar

[3]

D. Chae, P. Constantin, D. Córdoba, F. Gancedo and J. Wu, Generalized surface quasi-geostrophic equations with singular velocities,, Comm. Pure Appl. Math., 65 (2012), 1037.  doi: 10.1002/cpa.21390.  Google Scholar

[4]

J.-Y. Chemin, Persistance de structures géométriques dans les fluides incompressibles bidimensionnels,, Ann. Sci. École Norm. Sup. (4), 26 (1993), 517.   Google Scholar

[5]

P. Constantin, A. J. Majda and E. Tabak, Formation of strong fronts in the $2$-D quasigeostrophic thermal active scalar,, Nonlinearity, 7 (1994), 1495.  doi: 10.1088/0951-7715/7/6/001.  Google Scholar

[6]

D. Córdoba, M. A. Fontelos, A. M. Mancho and J. L. Rodrigo, Evidence of singularities for a family of contour dynamics equations,, Proc. Natl. Acad. Sci. USA, 02 (2005), 5949.   Google Scholar

[7]

G. S. Deem and N. J. Zabusky, Vortex waves: Stationary "V-states", interactions, recurrence, and breaking,, Physical Review Letters, 40 (1978), 859.  doi: 10.1103/PhysRevLett.40.859.  Google Scholar

[8]

S. A. Denisov, The Sharp Corner Formation in 2d Euler Dynamics of Patches: Infinite Double Exponential rate of Merging,, ArXiv e-prints, (2012).   Google Scholar

[9]

F. Gancedo, Existence for the $\alpha$-patch model and the QC sharp front in Sobolev spaces,, Adv. Math., 217 (2008), 2569.  doi: 10.1016/j.aim.2007.10.010.  Google Scholar

[10]

F. Gancedo and R. M. Strain, Absence of splash singularities for SQG sharp fronts and the Muskat problem,, Proc. Natl. Acad. Sci. USA, 111 (2014), 635.  doi: 10.1073/pnas.1320554111.  Google Scholar

[11]

J. Gómez-Serrano and R. Granero-Belinchón, On turning waves for the inhomogeneous Muskat problem: A computer-assisted proof,, Nonlinearity, 27 (2014), 1471.  doi: 10.1088/0951-7715/27/6/1471.  Google Scholar

[12]

I. M. Held, R. T. Pierrehumbert, S. T. Garner and K. L. Swanson, Surface quasi-geostrophic dynamics,, J. Fluid Mech., 282 (1995), 1.  doi: 10.1017/S0022112095000012.  Google Scholar

[13]

T. Hmidi, J. Mateu and J. Verdera, Boundary regularity of rotating vortex patches,, Archive for Rational Mechanics and Analysis, 209 (2013), 171.  doi: 10.1007/s00205-013-0618-8.  Google Scholar

[14]

W. Hofschuster and W. Krämer, C-XSC 2.0-A C++ library for extended scientific computing,, In Numerical software with result verification, 2991 (2004), 15.  doi: 10.1007/978-3-540-24738-8_2.  Google Scholar

[15]

O. Holzmann, B. Lang and H. Schütt, Newton's constant of gravitation and verified numerical quadrature,, Reliable Computing, 2 (1996), 229.  doi: 10.1007/BF02391697.  Google Scholar

[16]

W. Krämer and S. Wedner, Two adaptive Gauss-Legendre type algorithms for the verified computation of definite integrals,, Reliable Computing, 2 (1996), 241.  doi: 10.1007/BF02391698.  Google Scholar

[17]

H. Lamb, Hydrodynamics,, Cambridge Mathematical Library. Cambridge University Press, (1993).   Google Scholar

[18]

B. Lang, Derivative-based subdivision in multi-dimensional verified gaussian quadrature,, In G. Alefeld, (2001), 145.   Google Scholar

[19]

R. Moore and F. Bierbaum, Methods and Applications of Interval Analysis, volume 2,, Society for Industrial & Applied Mathematics, (1979).   Google Scholar

[20]

J. Pedlosky, Geophysical fluid dynamics,, Journal of Applied Mechanics, 48 (1981).  doi: 10.1115/1.3157711.  Google Scholar

[21]

S. G. Resnick, Dynamical Problems in Non-Linear Advective Partial Differential Equations,, PhD thesis, (1995).   Google Scholar

[22]

J. L. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation,, Comm. Pure Appl. Math., 58 (2005), 821.  doi: 10.1002/cpa.20059.  Google Scholar

[23]

R. Scott and D. Dritschel, A self-similar cascade of instabilities in the surface quasigeostrophic system,, Phys. Rev. Lett., 112 (2014).  doi: 10.1103/PhysRevLett.112.144505.  Google Scholar

[24]

R. K. Scott, A scenario for finite-time singularity in the quasigeostrophic model,, Journal of Fluid Mechanics, 687 (2011), 492.   Google Scholar

[25]

W. Tucker, Validated Numerics,, Princeton University Press, (2011).   Google Scholar

[26]

H. M. Wu, E. A. Overman and N. J. Zabusky, Steady-state solutions of the Euler equations in two dimensions: Rotating and translating $V$-states with limiting cases. I. Numerical algorithms and results,, J. Comput. Phys., 53 (1984), 42.  doi: 10.1016/0021-9991(84)90051-2.  Google Scholar

[27]

V. I. Yudovich., Non-stationary flows of an ideal incompressible fluid,, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032.   Google Scholar

[1]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[2]

Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166

[3]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[4]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[5]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[6]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[7]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[8]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[9]

Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406

[10]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[11]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[12]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[13]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[14]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[15]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[16]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[17]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[18]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[19]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[20]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (8)

[Back to Top]