December  2014, 34(12): 5045-5059. doi: 10.3934/dcds.2014.34.5045

Remarks on geometric properties of SQG sharp fronts and $\alpha$-patches

1. 

Departamento de Matemáticas de la UAM, Instituto de Ciencias Matemáticas del CSIC, Campus de Cantoblanco, 28049 Madrid, Spain

2. 

Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, C/ Nicolas Cabrera, 13-15, 28049 Madrid, Spain, Spain

3. 

Department of Mathematics, Princeton University, 1102 Fine Hall, Washington Rd, Princeton, NJ 08544, United States

Received  January 2014 Revised  May 2014 Published  June 2014

Guided by numerical simulations, we present the proof of two results concerning the behaviour of SQG sharp fronts and $\alpha$-patches. We establish that ellipses are not rotational solutions and we prove that initially convex interfaces may lose this property in finite time.
Citation: Angel Castro, Diego Córdoba, Javier Gómez-Serrano, Alberto Martín Zamora. Remarks on geometric properties of SQG sharp fronts and $\alpha$-patches. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5045-5059. doi: 10.3934/dcds.2014.34.5045
References:
[1]

A. L. Bertozzi and P. Constantin, Global regularity for vortex patches,, Comm. Math. Phys., 152 (1993), 19.  doi: 10.1007/BF02097055.  Google Scholar

[2]

M. Berz and K. Makino, New methods for high-dimensional verified quadrature,, Reliable Computing, 5 (1999), 13.  doi: 10.1023/A:1026437523641.  Google Scholar

[3]

D. Chae, P. Constantin, D. Córdoba, F. Gancedo and J. Wu, Generalized surface quasi-geostrophic equations with singular velocities,, Comm. Pure Appl. Math., 65 (2012), 1037.  doi: 10.1002/cpa.21390.  Google Scholar

[4]

J.-Y. Chemin, Persistance de structures géométriques dans les fluides incompressibles bidimensionnels,, Ann. Sci. École Norm. Sup. (4), 26 (1993), 517.   Google Scholar

[5]

P. Constantin, A. J. Majda and E. Tabak, Formation of strong fronts in the $2$-D quasigeostrophic thermal active scalar,, Nonlinearity, 7 (1994), 1495.  doi: 10.1088/0951-7715/7/6/001.  Google Scholar

[6]

D. Córdoba, M. A. Fontelos, A. M. Mancho and J. L. Rodrigo, Evidence of singularities for a family of contour dynamics equations,, Proc. Natl. Acad. Sci. USA, 02 (2005), 5949.   Google Scholar

[7]

G. S. Deem and N. J. Zabusky, Vortex waves: Stationary "V-states", interactions, recurrence, and breaking,, Physical Review Letters, 40 (1978), 859.  doi: 10.1103/PhysRevLett.40.859.  Google Scholar

[8]

S. A. Denisov, The Sharp Corner Formation in 2d Euler Dynamics of Patches: Infinite Double Exponential rate of Merging,, ArXiv e-prints, (2012).   Google Scholar

[9]

F. Gancedo, Existence for the $\alpha$-patch model and the QC sharp front in Sobolev spaces,, Adv. Math., 217 (2008), 2569.  doi: 10.1016/j.aim.2007.10.010.  Google Scholar

[10]

F. Gancedo and R. M. Strain, Absence of splash singularities for SQG sharp fronts and the Muskat problem,, Proc. Natl. Acad. Sci. USA, 111 (2014), 635.  doi: 10.1073/pnas.1320554111.  Google Scholar

[11]

J. Gómez-Serrano and R. Granero-Belinchón, On turning waves for the inhomogeneous Muskat problem: A computer-assisted proof,, Nonlinearity, 27 (2014), 1471.  doi: 10.1088/0951-7715/27/6/1471.  Google Scholar

[12]

I. M. Held, R. T. Pierrehumbert, S. T. Garner and K. L. Swanson, Surface quasi-geostrophic dynamics,, J. Fluid Mech., 282 (1995), 1.  doi: 10.1017/S0022112095000012.  Google Scholar

[13]

T. Hmidi, J. Mateu and J. Verdera, Boundary regularity of rotating vortex patches,, Archive for Rational Mechanics and Analysis, 209 (2013), 171.  doi: 10.1007/s00205-013-0618-8.  Google Scholar

[14]

W. Hofschuster and W. Krämer, C-XSC 2.0-A C++ library for extended scientific computing,, In Numerical software with result verification, 2991 (2004), 15.  doi: 10.1007/978-3-540-24738-8_2.  Google Scholar

[15]

O. Holzmann, B. Lang and H. Schütt, Newton's constant of gravitation and verified numerical quadrature,, Reliable Computing, 2 (1996), 229.  doi: 10.1007/BF02391697.  Google Scholar

[16]

W. Krämer and S. Wedner, Two adaptive Gauss-Legendre type algorithms for the verified computation of definite integrals,, Reliable Computing, 2 (1996), 241.  doi: 10.1007/BF02391698.  Google Scholar

[17]

H. Lamb, Hydrodynamics,, Cambridge Mathematical Library. Cambridge University Press, (1993).   Google Scholar

[18]

B. Lang, Derivative-based subdivision in multi-dimensional verified gaussian quadrature,, In G. Alefeld, (2001), 145.   Google Scholar

[19]

R. Moore and F. Bierbaum, Methods and Applications of Interval Analysis, volume 2,, Society for Industrial & Applied Mathematics, (1979).   Google Scholar

[20]

J. Pedlosky, Geophysical fluid dynamics,, Journal of Applied Mechanics, 48 (1981).  doi: 10.1115/1.3157711.  Google Scholar

[21]

S. G. Resnick, Dynamical Problems in Non-Linear Advective Partial Differential Equations,, PhD thesis, (1995).   Google Scholar

[22]

J. L. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation,, Comm. Pure Appl. Math., 58 (2005), 821.  doi: 10.1002/cpa.20059.  Google Scholar

[23]

R. Scott and D. Dritschel, A self-similar cascade of instabilities in the surface quasigeostrophic system,, Phys. Rev. Lett., 112 (2014).  doi: 10.1103/PhysRevLett.112.144505.  Google Scholar

[24]

R. K. Scott, A scenario for finite-time singularity in the quasigeostrophic model,, Journal of Fluid Mechanics, 687 (2011), 492.   Google Scholar

[25]

W. Tucker, Validated Numerics,, Princeton University Press, (2011).   Google Scholar

[26]

H. M. Wu, E. A. Overman and N. J. Zabusky, Steady-state solutions of the Euler equations in two dimensions: Rotating and translating $V$-states with limiting cases. I. Numerical algorithms and results,, J. Comput. Phys., 53 (1984), 42.  doi: 10.1016/0021-9991(84)90051-2.  Google Scholar

[27]

V. I. Yudovich., Non-stationary flows of an ideal incompressible fluid,, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032.   Google Scholar

show all references

References:
[1]

A. L. Bertozzi and P. Constantin, Global regularity for vortex patches,, Comm. Math. Phys., 152 (1993), 19.  doi: 10.1007/BF02097055.  Google Scholar

[2]

M. Berz and K. Makino, New methods for high-dimensional verified quadrature,, Reliable Computing, 5 (1999), 13.  doi: 10.1023/A:1026437523641.  Google Scholar

[3]

D. Chae, P. Constantin, D. Córdoba, F. Gancedo and J. Wu, Generalized surface quasi-geostrophic equations with singular velocities,, Comm. Pure Appl. Math., 65 (2012), 1037.  doi: 10.1002/cpa.21390.  Google Scholar

[4]

J.-Y. Chemin, Persistance de structures géométriques dans les fluides incompressibles bidimensionnels,, Ann. Sci. École Norm. Sup. (4), 26 (1993), 517.   Google Scholar

[5]

P. Constantin, A. J. Majda and E. Tabak, Formation of strong fronts in the $2$-D quasigeostrophic thermal active scalar,, Nonlinearity, 7 (1994), 1495.  doi: 10.1088/0951-7715/7/6/001.  Google Scholar

[6]

D. Córdoba, M. A. Fontelos, A. M. Mancho and J. L. Rodrigo, Evidence of singularities for a family of contour dynamics equations,, Proc. Natl. Acad. Sci. USA, 02 (2005), 5949.   Google Scholar

[7]

G. S. Deem and N. J. Zabusky, Vortex waves: Stationary "V-states", interactions, recurrence, and breaking,, Physical Review Letters, 40 (1978), 859.  doi: 10.1103/PhysRevLett.40.859.  Google Scholar

[8]

S. A. Denisov, The Sharp Corner Formation in 2d Euler Dynamics of Patches: Infinite Double Exponential rate of Merging,, ArXiv e-prints, (2012).   Google Scholar

[9]

F. Gancedo, Existence for the $\alpha$-patch model and the QC sharp front in Sobolev spaces,, Adv. Math., 217 (2008), 2569.  doi: 10.1016/j.aim.2007.10.010.  Google Scholar

[10]

F. Gancedo and R. M. Strain, Absence of splash singularities for SQG sharp fronts and the Muskat problem,, Proc. Natl. Acad. Sci. USA, 111 (2014), 635.  doi: 10.1073/pnas.1320554111.  Google Scholar

[11]

J. Gómez-Serrano and R. Granero-Belinchón, On turning waves for the inhomogeneous Muskat problem: A computer-assisted proof,, Nonlinearity, 27 (2014), 1471.  doi: 10.1088/0951-7715/27/6/1471.  Google Scholar

[12]

I. M. Held, R. T. Pierrehumbert, S. T. Garner and K. L. Swanson, Surface quasi-geostrophic dynamics,, J. Fluid Mech., 282 (1995), 1.  doi: 10.1017/S0022112095000012.  Google Scholar

[13]

T. Hmidi, J. Mateu and J. Verdera, Boundary regularity of rotating vortex patches,, Archive for Rational Mechanics and Analysis, 209 (2013), 171.  doi: 10.1007/s00205-013-0618-8.  Google Scholar

[14]

W. Hofschuster and W. Krämer, C-XSC 2.0-A C++ library for extended scientific computing,, In Numerical software with result verification, 2991 (2004), 15.  doi: 10.1007/978-3-540-24738-8_2.  Google Scholar

[15]

O. Holzmann, B. Lang and H. Schütt, Newton's constant of gravitation and verified numerical quadrature,, Reliable Computing, 2 (1996), 229.  doi: 10.1007/BF02391697.  Google Scholar

[16]

W. Krämer and S. Wedner, Two adaptive Gauss-Legendre type algorithms for the verified computation of definite integrals,, Reliable Computing, 2 (1996), 241.  doi: 10.1007/BF02391698.  Google Scholar

[17]

H. Lamb, Hydrodynamics,, Cambridge Mathematical Library. Cambridge University Press, (1993).   Google Scholar

[18]

B. Lang, Derivative-based subdivision in multi-dimensional verified gaussian quadrature,, In G. Alefeld, (2001), 145.   Google Scholar

[19]

R. Moore and F. Bierbaum, Methods and Applications of Interval Analysis, volume 2,, Society for Industrial & Applied Mathematics, (1979).   Google Scholar

[20]

J. Pedlosky, Geophysical fluid dynamics,, Journal of Applied Mechanics, 48 (1981).  doi: 10.1115/1.3157711.  Google Scholar

[21]

S. G. Resnick, Dynamical Problems in Non-Linear Advective Partial Differential Equations,, PhD thesis, (1995).   Google Scholar

[22]

J. L. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation,, Comm. Pure Appl. Math., 58 (2005), 821.  doi: 10.1002/cpa.20059.  Google Scholar

[23]

R. Scott and D. Dritschel, A self-similar cascade of instabilities in the surface quasigeostrophic system,, Phys. Rev. Lett., 112 (2014).  doi: 10.1103/PhysRevLett.112.144505.  Google Scholar

[24]

R. K. Scott, A scenario for finite-time singularity in the quasigeostrophic model,, Journal of Fluid Mechanics, 687 (2011), 492.   Google Scholar

[25]

W. Tucker, Validated Numerics,, Princeton University Press, (2011).   Google Scholar

[26]

H. M. Wu, E. A. Overman and N. J. Zabusky, Steady-state solutions of the Euler equations in two dimensions: Rotating and translating $V$-states with limiting cases. I. Numerical algorithms and results,, J. Comput. Phys., 53 (1984), 42.  doi: 10.1016/0021-9991(84)90051-2.  Google Scholar

[27]

V. I. Yudovich., Non-stationary flows of an ideal incompressible fluid,, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032.   Google Scholar

[1]

Chiara Caracciolo, Ugo Locatelli. Computer-assisted estimates for Birkhoff normal forms. Journal of Computational Dynamics, 2020, 7 (2) : 425-460. doi: 10.3934/jcd.2020017

[2]

Maxime Breden, Jean-Philippe Lessard. Polynomial interpolation and a priori bootstrap for computer-assisted proofs in nonlinear ODEs. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2825-2858. doi: 10.3934/dcdsb.2018164

[3]

István Balázs, Jan Bouwe van den Berg, Julien Courtois, János Dudás, Jean-Philippe Lessard, Anett Vörös-Kiss, JF Williams, Xi Yuan Yin. Computer-assisted proofs for radially symmetric solutions of PDEs. Journal of Computational Dynamics, 2018, 5 (1&2) : 61-80. doi: 10.3934/jcd.2018003

[4]

Thomas Wanner. Computer-assisted equilibrium validation for the diblock copolymer model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1075-1107. doi: 10.3934/dcds.2017045

[5]

A. Aschwanden, A. Schulze-Halberg, D. Stoffer. Stable periodic solutions for delay equations with positive feedback - a computer-assisted proof. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 721-736. doi: 10.3934/dcds.2006.14.721

[6]

Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95

[7]

Maciej J. Capiński, Emmanuel Fleurantin, J. D. Mireles James. Computer assisted proofs of two-dimensional attracting invariant tori for ODEs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6681-6707. doi: 10.3934/dcds.2020162

[8]

Shikun Wang. Dynamics of a chemostat system with two patches. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6261-6278. doi: 10.3934/dcdsb.2019138

[9]

Linxiang Wang, Roderick Melnik. Dynamics of shape memory alloys patches with mechanically induced transformations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1237-1252. doi: 10.3934/dcds.2006.15.1237

[10]

Joachim Escher, Piotr B. Mucha. The surface diffusion flow on rough phase spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 431-453. doi: 10.3934/dcds.2010.26.431

[11]

Jeremy LeCrone, Yuanzhen Shao, Gieri Simonett. The surface diffusion and the Willmore flow for uniformly regular hypersurfaces. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3503-3524. doi: 10.3934/dcdss.2020242

[12]

Young-Pil Choi. Compressible Euler equations interacting with incompressible flow. Kinetic & Related Models, 2015, 8 (2) : 335-358. doi: 10.3934/krm.2015.8.335

[13]

David J. Silvester, Alex Bespalov, Catherine E. Powell. A framework for the development of implicit solvers for incompressible flow problems. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1195-1221. doi: 10.3934/dcdss.2012.5.1195

[14]

Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873

[15]

Vassilios A. Tsachouridis, Georgios Giantamidis, Stylianos Basagiannis, Kostas Kouramas. Formal analysis of the Schulz matrix inversion algorithm: A paradigm towards computer aided verification of general matrix flow solvers. Numerical Algebra, Control & Optimization, 2020, 10 (2) : 177-206. doi: 10.3934/naco.2019047

[16]

Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148

[17]

Roman M. Taranets, Jeffrey T. Wong. Existence of weak solutions for particle-laden flow with surface tension. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4979-4996. doi: 10.3934/dcds.2018217

[18]

Yoshihiro Shibata. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. Evolution Equations & Control Theory, 2018, 7 (1) : 117-152. doi: 10.3934/eect.2018007

[19]

Daniel Coutand, Steve Shkoller. A simple proof of well-posedness for the free-surface incompressible Euler equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 429-449. doi: 10.3934/dcdss.2010.3.429

[20]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (8)

[Back to Top]